Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 169: 8-17, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30412897

RESUMO

Silicon can increase salt tolerance, but the underlying mechanism has remained unclear. Here, we investigated the effect of silicon on polyamine metabolism and the role of polyamine accumulation in silicon-mediated salt tolerance in cucumber. Seedlings of cucumber 'JinYou 1' were subjected to salt stress (75 mM NaCl) in the presence or absence of added 0.3 mM silicon. Plant growth, polyamine metabolism and effects of exogenous polyamines and polyamine synthesis inhibitor dicyclohexylammonium sulphate on oxidative damage were investigated. The results showed that salt stress inhibited plant growth and decreased leaf chlorophyll levels and the maximum quantum yield of PSII, and added silicon ameliorated these negative effects. Salt stress increased polyamine accumulation in the leaves and roots. Compared with salt stress alone, overall, silicon addition decreased free putrescine concentrations, but increased spermidine and spermine concentrations in both leaves and roots under salt stress. Silicon application resulted in increased polyamine levels under salt stress by promoting the activities of S-adenosylmethionine decarboxylase and arginine decarboxylase while inhibiting the activity of diamine oxidase. Exogenous application of spermidine and spermine alleviated salt-stress-induced oxidative damage, whereas polyamine synthesis inhibitor eliminated the silicon-mediated decrease in oxidative damage. The results suggest that silicon-enhanced polyamine accumulation in cucumber under salt stress may play a role in decreasing oxidative damage and therefore increase the salt tolerance.


Assuntos
Cucumis sativus/efeitos dos fármacos , Poliaminas/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Silício/farmacologia , Clorofila/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Putrescina/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA