Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167236, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740225

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a common malignancy with a 5-year survival <10 %. Immunosuppressive tumor microenvironment (TME) plays a critical role in the progression of PDA. In recent years, programmed death-ligand 1 (PD-L1)/programmed cell death protein-1 (PD-1) blockade has emerged as a potent anti-tumor immunotherapy, while is yet to achieve significant clinical benefits for PDA patients. P21-Activated kinase 1 (PAK1) is highly upregulated in PDA and has been reported to be involved in the regulation of anti-tumor immunity. This study aims to investigate the combined effect of PAK1 inhibition and anti-PD-1 therapy on PDA and the underlying mechanisms. We have shown that PAK1 expression positively correlated with PD-L1 in PDA patients, and that inhibition of PAK1 downregulated PD-L1 expression of PDA cells. More importantly, we have demonstrated that PAK1 competed with PD-L1 in binding to tripartite motif-containing protein 21 (TRIM21), a ubiquitin E3 ligase, resulting in less ubiquitination and degradation of PD-L1. Moreover, PAK1 inhibition promoted CD8+ T cells activation and infiltration. In a murine PDA model, the combination of PAK1 inhibition and anti-PD-1 therapy showed significant anti-tumor effects compared with the control or monotherapy. Our results indicated that the combination of PAK1 inhibition and anti-PD-1 therapy would be a more effective treatment for PDA patients.

2.
Br J Cancer ; 130(2): 201-212, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38040817

RESUMO

BACKGROUND: N4-acetylcytidine (ac4C) is a conserved and abundant mRNA modification that controls protein expression by affecting translation efficiency and mRNA stability. Whether the ac4C modification of mRNA regulates hepatocellular carcinoma (HCC) development or affects the immunotherapy of HCC is unknown. METHODS: By constructing an orthotopic transplantation mouse HCC model and isolating tumour-infiltrated immunocytes, we evaluated the ac4C modification intensity using flow cytometry. Remodelin hydrobromide (REM), an ac4C modification inhibitor, was systematically used to understand the extensive role of ac4C modification in immunocyte phenotypes. Single-cell RNA-seq was performed to comprehensively evaluate the changes in the tumour-infiltrating immunocytes and identify targeted cell clusters. RNA-seq and RIP-seq analyses were performed to elucidate the underlying molecular mechanisms. Tyramide Signal Amplification (TSA) analysis on the HCC tissue microarray was performed to explore the clinical relatedness of our findings. RESULTS: Ac4C modification promoted M1 macrophage infiltration and reduced myeloid-derived suppressor cell MDSCs infiltration in HCC. The inhibition of ac4C modification induces PDL1 expression by stabilising mRNA in the myeloid cells, thereby attenuating the CTL-mediated tumour cell-killing ability. High infiltration of ac4C+CD11b+ cells is positively related to a better prognosis in patients with HCC. CONCLUSIONS: Ac4C modification of myeloid cells enhanced the HCC immunotherapy by suppressing PDL1 expression.


Assuntos
Carcinoma Hepatocelular , Citidina/análogos & derivados , Neoplasias Hepáticas , Células Supressoras Mieloides , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Regulação para Baixo , Imunoterapia , RNA Mensageiro/genética , Células Supressoras Mieloides/metabolismo
3.
Cell Death Dis ; 14(12): 810, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065978

RESUMO

Ferroptosis, which is driven by iron-dependent lipid peroxidation, plays an essential role in liver ischemia-reperfusion injury (IRI) during liver transplantation (LT). Gp78, an E3 ligase, has been implicated in lipid metabolism and inflammation. However, its role in liver IRI and ferroptosis remains unknown. Here, hepatocyte-specific gp78 knockout (HKO) or overexpressed (OE) mice were generated to examine the effect of gp78 on liver IRI, and a multi-omics approach (transcriptomics, proteomics, and metabolomics) was performed to explore the potential mechanism. Gp78 expression decreased after reperfusion in LT patients and mice with IRI, and gp78 expression was positively correlated with liver damage. Gp78 absence from hepatocytes alleviated liver damage in mice with IRI, ameliorating inflammation. However, mice with hepatic gp78 overexpression showed the opposite phenotype. Mechanistically, gp78 overexpression disturbed lipid homeostasis, remodeling polyunsaturated fatty acid (PUFA) metabolism, causing oxidized lipids accumulation and ferroptosis, partly by promoting ACSL4 expression. Chemical inhibition of ferroptosis or ACSL4 abrogated the effects of gp78 on ferroptosis and liver IRI. Our findings reveal a role of gp78 in liver IRI pathogenesis and uncover a mechanism by which gp78 promotes hepatocyte ferroptosis by ACSL4, suggesting the gp78-ACSL4 axis as a feasible target for the treatment of IRI-associated liver damage.


Assuntos
Ferroptose , Hepatócitos , Hepatopatias , Receptores do Fator Autócrino de Motilidade , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Hepatócitos/enzimologia , Inflamação/metabolismo , Hepatopatias/metabolismo , Traumatismo por Reperfusão/metabolismo , Transplante de Fígado , Receptores do Fator Autócrino de Motilidade/genética , Receptores do Fator Autócrino de Motilidade/metabolismo , Coenzima A Ligases
4.
J Transl Med ; 21(1): 739, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858181

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous. METHODS: Insig2 global knock-out (KO) mice and mice with adeno-associated-virus8 (AAV8)-delivered Insig2 hepatocyte-specific overexpression were subjected to a 70% hepatic IR model. Liver injury was assessed by monitoring hepatic histology, inflammatory responses, and apoptosis. Hypoxia/reoxygenation stimulation (H/R) of primary hepatocytes and hypoxia model induced by cobalt chloride (CoCl2) were used for in vitro experiments. Multi-omics analysis of transcriptomics, proteomics, and metabolomics was used to investigate the molecular mechanisms underlying Insig2. RESULTS: Hepatic Insig2 expression was significantly reduced in clinical samples undergoing LT and the mouse IR model. Our findings showed that Insig2 depletion significantly aggravated IR-induced hepatic inflammation, cell death and injury, whereas Insig2 overexpression caused the opposite phenotypes. The results of in vitro H/R experiments were consistent with those in vivo. Mechanistically, multi-omics analysis revealed that Insig2 is associated with increased antioxidant pentose phosphate pathway (PPP) activity. The inhibition of glucose-6-phosphate-dehydrogenase (G6PD), a rate-limiting enzyme of PPP, rescued the protective effect of Insig2 overexpression, exacerbating liver injury. Finally, our findings indicated that mouse IR injury could be attenuated by developing a nanoparticle delivery system that enables liver-targeted delivery of substrate of PPP (glucose 6-phosphate). CONCLUSIONS: Insig2 has a protective function in liver IR by upregulating the PPP activity and remodeling glucose metabolism. The supplementary glucose 6-phosphate (G6P) salt may serve as a viable therapeutic target for alleviating hepatic IR.


Assuntos
Hepatócitos , Insulinas , Hepatopatias , Traumatismo por Reperfusão , Animais , Camundongos , Antioxidantes/metabolismo , Apoptose/genética , Glucose/metabolismo , Hepatectomia/efeitos adversos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Insulinas/metabolismo , Fígado/irrigação sanguínea , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/cirurgia , Transplante de Fígado/efeitos adversos , Fosfatos/metabolismo , Fosfatos/farmacologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
5.
Cell Commun Signal ; 21(1): 193, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537668

RESUMO

BACKGROUND: Sorafenib resistance greatly reduces the efficacy of treatments in advanced hepatocellular carcinoma (HCC) patients, but the underlying mechanisms are not thoroughly understood. All-trans retinoic acid (ATRA), an anti-leukaemia agent, has attracted considerable attention due to its role in sensitizing cells to other anticancer treatments. We aimed to investigate the combined effect of ATRA and Sorafenib on HCC and the underlying mechanisms. METHODS: CCK-8, cell sphere formation, trans-well migration, and wound-healing assays were used to analyse the biological behaviours of HCC cells in vitro. Western blotting and qRT-PCR analysis were conducted to measure the expression of p21 activated kinase 1 (PAK1) and phospho-p21 activated kinase 1 (pPAK1). Xenograft models were established to confirm the synergistic effects of ATRA and Sorafenib in vivo. TUNEL assays and immunohistochemistry were utilized to determine apoptosis, proliferation, PAK1 and pPAK1 levels in tumour tissues. RESULTS: We observed that PAK1 was overexpressed in HCC, and its expression was negatively correlated with the survival of patients. PAK1 promoted the proliferation, self-renewal and epithelial-mesenchymal transition of HCC cells. Correlation analysis indicated that the IC50 of Sorafenib was positively correlated with the level of pPAK1 in HCC cell lines. ATRA inhibited the progression of HCC and sensitized HCC response to Sorafenib by downregulation of PAK1, as shown by the calculated coefficient of drug interaction and the data obtained from xenograft models. CONCLUSIONS: Our findings indicated that instead of treatment with Sorafenib alone, the combination of ATRA and Sorafenib provides a more effective treatment for HCC patients. Video Abstract.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Carcinoma Hepatocelular/patologia , Quinases Ativadas por p21/metabolismo , Regulação para Baixo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Tretinoína/farmacologia , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
6.
Mol Ther Nucleic Acids ; 31: 309-323, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36726409

RESUMO

CRISPR-Cas9-mediated genome editing in sheep is of great use in both agricultural and biomedical applications. While targeted gene knockout by CRISPR-Cas9 through non-homologous end joining (NHEJ) has worked efficiently, the knockin efficiency via homology-directed repair (HDR) remains lower, which severely hampers the application of precise genome editing in sheep. Here, in sheep fetal fibroblasts (SFFs), we optimized several key parameters that affect HDR, including homology arm (HA) length and the amount of double-stranded DNA (dsDNA) repair template; we also observed synchronization of SFFs in G2/M phase could increase HDR efficiency. Besides, we identified three potent small molecules, RITA, Nutlin3, and CTX1, inhibitors of p53-MDM2 interaction, that caused activation of the p53 pathway, resulting in distinct G2/M cell-cycle arrest in response to DNA damage and improved CRISPR-Cas9-mediated HDR efficiency by 1.43- to 4.28-fold in SFFs. Furthermore, we demonstrated that genetic knockout of p53 could inhibit HDR in SFFs by suppressing the expression of several key factors involved in the HDR pathway, such as BRCA1 and RAD51. Overall, this study offers an optimized strategy for the usage of dsDNA repair template, more importantly, the application of MDM2 antagonists provides a simple and efficient strategy to promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells.

7.
Hepatology ; 78(4): 1064-1078, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626623

RESUMO

BACKGROUND AND AIMS: HCC is a malignant disease. Compared with tyrosine kinase inhibitors (the classical therapy), immune checkpoint inhibitors are more effective in the treatment of HCC, despite their limited efficacy. Among these restricted factors, exhaustion of tumor-infiltrated lymphocytes, especially CD8 + T cells, is a core event. We aimed to determine the key factors contributing to CD8 + T-cell infiltration in HCC and investigate the underlying mechanisms. APPROACH AND RESULTS: Using machine learning and multiplex immunohistochemistry analysis, we showed that dedicator of cytokinesis protein 2 (DOCK2) was a potential indicator of infiltrated CD8 + T cells in HCC. Using RNA sequencing, flow cytometry analysis, and mouse HCC models, we demonstrated that DOCK2 inactivation accounted for infiltrated CD8 + T-cell exhaustion in tumors. Using quasi-targeted metabolomics, mass spectrum, and mass cytometry by time of flight analysis, we found that cholesterol sulfate synthesized by sulfotransferase 2B1 in tumor cells suppressed DOCK2 enzymatic activity of T cells. Through virtual screening, molecular docking simulation, and experiments validation, we demonstrated that tolazamide reversed DOCK2 inactivation-mediated CD8 + T-cell exhaustion and enhanced anti-programmed death-ligand 1 antibody+apatinib immunotherapeutic effects on HCC. CONCLUSIONS: This study indicates that DOCK2 controls CD8 + T-cell infiltration in HCC, and cholesterol sulfate synthesized by sulfotransferase 2B1 in tumor cells promotes effector T-cell exhaustion. The findings suggest that the usage of conventional drugs affects immunotherapy efficacy in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Exaustão das Células T , Linfócitos T CD8-Positivos , Sulfotransferases/metabolismo , Sulfotransferases/uso terapêutico , Microambiente Tumoral , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/uso terapêutico , Proteínas Ativadoras de GTPase/metabolismo
8.
Front Pharmacol ; 13: 989664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188605

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) rapidly infects humans and animals which make coronavirus disease 2019 (COVID-19) a grievous epidemic worldwide which broke out in 2020. According to data analysis of the other coronavirus family, for instance severe acute respiratory syndrome SARS coronavirus (SARS-CoV), can provide experience for the mutation of SARS-CoV-2 and the prevention and treatment of COVID-19. Toll-like receptors (TLRs) as a pattern recognition receptor (PRRs), have an indispensable function in identifying the invader even activate the innate immune system. It is possible for organism to activate different TLR pathways which leads to secretion of proinflammatory cytokines such as Interleukin 1 (IL-1), Interleukin 6 (IL-6), Tumor necrosis factor α (TNFα) and type Ⅰ interferon. As a component of non-specific immunity, TLRs pathway may participate in the SARS-CoV-2 pathogenic processes, due to previous works have proved that TLRs are involved in the invasion and infection of SARS-CoV and MERS to varying degrees. Different TLR, such as TLR2, TLR4, TLR7, TLR8 and TLR9 probably have a double-sided in COVID-19 infection. Therefore, it is of great significance for a correctly acknowledging how TLR take part in the SARS-CoV-2 pathogenic processes, which will be the development of treatment and prevention strategies.

9.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805939

RESUMO

Angiogenesis is involved in physiological and pathological processes in the body. Tumor angiogenesis is a key factor associated with tumor growth, progression, and metastasis. Therefore, there is great interest in developing antiangiogenic strategies. Hypoxia is the basic initiating factor of tumor angiogenesis, which leads to the increase of vascular endothelial growth factor (VEGF), angiopoietin (Ang), hypoxia-inducible factor (HIF-1), etc. in hypoxic cells. The pathways of VEGF and Ang are considered to be critical steps in tumor angiogenesis. A number of antiangiogenic drugs targeting VEGF/VEGFR (VEGF receptor) or ANG/Tie2, or both, are currently being used for cancer treatment, or are still in various stages of clinical development or preclinical evaluation. This article aims to review the mechanisms of angiogenesis and tumor angiogenesis and to focus on new drugs and strategies for the treatment of antiangiogenesis. However, antitumor angiogenic drugs alone may not be sufficient to eradicate tumors. The molecular chaperone heat shock protein 90 (HSP90) is considered a promising molecular target. The VEGFR system and its downstream signaling molecules depend on the function of HSP90. This article also briefly introduces the role of HSP90 in angiogenesis and some HSP90 inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Angiopoietinas , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90 , Humanos , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
10.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886904

RESUMO

There are three main types of cancer in the female reproductive system, specifically ovarian cancer (OVCA), endometrial cancer (EC), and cervical cancer (CC). They are common malignant tumors in women worldwide, with high morbidity and mortality. In recent years, androgen receptors (ARs) have been found to be closely related to the occurrence, progression, prognosis, and drug resistance of these three types of tumors. This paper summarizes current views on the role of AR in female reproductive system cancer, the associations between female reproductive system cancers and AR expression and polymorphisms. AR regulates the downstream target genes transcriptional activity and the expression via interacting with coactivators/corepressors and upstream/downstream regulators and through the gene transcription mechanism of "classical A/AR signaling" or "non-classical AR signaling", involving a large number of regulatory factors and signaling pathways. ARs take part in the processes of cancer cell proliferation, migration/invasion, cancer cell stemness, and chemotherapeutic drug resistance. These findings suggest that the AR and related regulators could target the treatment of female reproductive system cancer.


Assuntos
Neoplasias do Endométrio , Neoplasias Ovarianas , Receptores Androgênicos , Androgênios/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Receptores Androgênicos/metabolismo
11.
Anim Nutr ; 10: 124-136, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35663374

RESUMO

The declines in laying performance during the late production period have adverse effects on the length of the production cycle. Improving the nutrition of laying hens is a crucial measure to reverse this declination. This study investigated the effect of selenium yeast (SY) on egg production, ileal gene expression and microbiota, as well as elucidating their associations in aged laying hens. A total of 375 Jinghong laying hens at 76 weeks old were randomly assigned into 5 dietary treatments, which included a selenium-deficient basal diet based on corn-soybean meal, and dietary supplementation of SY at 0.15, 0.30 and 0.45 mg/kg, and sodium selenite at 0.45 mg/kg. The results showed that SY ameliorated the depression in aged laying performance in the 0.30 mg/kg group (P < 0.01). Selenium yeast significantly increased ileum selenium concentration (P < 0.05), and SY groups had higher selenium deposition efficiency than the sodium selenite group. Functional enrichment and Short Time-series Expression Miner (STEM) analysis indicated that SY activated metabolic progress (e.g., glycerolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism), immune response and oxidative stress response. Four hub genes including thioredoxin reductase 1 (TXNRD1), dihydrolipoamide dehydrogenase (DLD), integrin linked kinase (ILK) and leucine zipper tumor suppressor 2 (LZTS2) were involved in intestinal metabolism which was closely associated with selenium deposition/status. Moreover, the relative abundance of Veillonella, Turicibacter and Lactobacillus was significantly increased, but the relative abundance of Stenotrophomonas was significantly decreased by SY supplementation. Multi-omics data integration and Canonical correspondence analysis (CCA) showed that both the ileum selenium content and the laying rate were highly correlated with pathways and bacteria enriched in metabolism and immune response. Meanwhile, the "switched on" gene prostate stem cell antigen (PSCA) had a positive relationship with Veillonella and a negative relationship with the opportunistic pathogens Stenotrophomonas. Overall, our study offered insight for the further exploration of the role of SY on boosting egg production and balancing ileum intestinal flora in aged laying hens.

12.
Nat Commun ; 13(1): 1662, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351888

RESUMO

Base editors (BEs) are genome engineering tools that can generate nucleotide substitutions without introducing double-stranded breaks (DSBs). A variety of strategies have been developed to improve the targeting scope and window of BEs. In a previous study, we found that a bacteriophage-derived peptide, referred to as G8PPD, could improve the specificity of Cas9 nuclease. Herein, we investigate the applicability of G8PPD as molecular modulators of BEs. We show that G8PPD can improve cytidine base editor (CBEs) and adenine base editor (ABE) to more focused targeting windows. Notably, in a cell-based disease model, G8PPD increases the percentage of perfectly edited gene alleles by BEs from less than 4% to more than 38% of the whole population. In addition, G8PPD can improve the targeting scope of BE in mouse embryos. In summary, our study presents the peptidyl modulators that can improve BEs for precision base editing.


Assuntos
Bacteriófagos , Edição de Genes , Alelos , Animais , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Camundongos , Peptídeos/genética
13.
Cells ; 12(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36611857

RESUMO

Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Segunda Neoplasia Primária , Humanos , Feminino , Prognóstico , Neoplasias Pulmonares/patologia , Neovascularização Patológica , Microambiente Tumoral
14.
Antioxidants (Basel) ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34829589

RESUMO

Ovarian cancer is a heterogeneous disease and is also the major cause of death among women from gynecologic malignancies. A combination of surgery and chemotherapy is the major therapy for ovarian cancer. Unfortunately, despite good response rates to initial surgery and chemotherapy, most patients relapse and have a generally poor survival rate. The present research sheds light on the therapeutic effects of multiple natural products in patients with ovarian cancer. Notably, these natural ingredients do not have adverse effects on healthy cells and tissues, indicating that natural products can serve as a safe alternative therapy for ovarian cancer. Trans-3,4,5'-Trihydroxystibene (resveratrol) is a natural product that is commonly found in the human diet and that has been shown to have anticancer effects on various human cancer cells. This review summarizes current knowledge regarding the progress of resveratrol against tumor cell proliferation, metastasis, apoptosis induction, autophagy, sensitization, and antioxidation as well as anti-inflammation. It also provides information regarding the role of resveratrol analogues in ovarian cancer. A better understanding of the role of resveratrol in ovarian cancer may provide a new array for the prevention and therapy of ovarian cancer.

15.
Cell Death Dis ; 12(12): 1084, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785656

RESUMO

Cytokeratin 19-positive (CK19+) hepatocellular carcinoma (HCC) is an aggressive subtype characterized by early recurrence and chemotherapy tolerance. However, there is no specific therapeutic option for CK19+ HCC. The correlation between tumor recurrence and expression status of CK19 were studied in 206 patients undergoing liver transplantation for HCC. CK19-/+ HCC cells were isolated to screen effective antitumor drugs. The therapeutic effects of regorafenib were evaluated in patient-derived xenograft (PDX) models from 10 HCC patients. The mechanism of regorafenib on CK19+ HCC was investigated. CK19 positiveness indicated aggressiveness of tumor and higher recurrence risk of HCC after liver transplantation. The isolated CK19+ HCC cells had more aggressive behaviors than CK19- cells. Regorafenib preferentially increased the growth inhibition and apoptosis of CK19+ cells in vitro, whereas sorafenib, apatinib, and 5-fluorouracil did not. In PDX models from CK19-/+ HCC patients, the tumor control rate of regorafenib achieved 80% for CK19+ HCCs, whereas 0% for CK19- HCCs. RNA-sequencing revealed that CK19+ cells had elevated expression of mitochondrial ribosomal proteins, which are essential for mitochondrial function. Further experiments confirmed that regorafenib attenuated the mitochondrial respiratory capacity in CK19+ cells. However, the mitochondrial respiration in CK19- cells were faint and hardly repressed by regorafenib. The mitochondrial respiration was regulated by the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which was inhibited by regorafenib in CK19+ cells. Hence, CK19 could be a potential marker of the therapeutic benefit of regorafenib, which facilitates the individualized therapy for HCC. STAT3/mitochondria axis determines the distinct response of CK19+ cells to regorafenib treatment.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Queratina-19/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Piridinas/uso terapêutico , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Humanos , Queratina-19/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Análise de Sobrevida , Transfecção
16.
Chin J Cancer Res ; 33(4): 470-479, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34584372

RESUMO

OBJECTIVE: Patient-derived xenograft (PDX) models provide a promising preclinical platform for hepatocellular carcinoma (HCC). However, the molecular features associated with successful engraftment of PDX models have not been revealed. METHODS: HCC tumor samples from 76 patients were implanted in immunodeficient mice. The molecular expression was evaluated by immunohistochemistry. Patient and tumor characteristics as well as tumor molecular expressions were compared for PDX engraftment using the Chi-square test. The independent prediction parameters were identified by logistic regression analyses. RESULTS: The engraftment rate for PDX models from patients with HCC was 39.47% (30/76). Tumors from younger patients and patients with elevated preoperative alpha-fetoprotein level had higher engraftment rates. Tumors with poor differentiation and vascular invasion were related to engraftment success. The positive expression of CK19, CD133, glypican-3 (GPC3), and Ki67 in tumor samples was associated with engraftment success. Logistic regression analyses indicated that GPC3 and Ki67 were two of the strongest predictors of PDX engraftment. Tumors with GPC3/Ki67 phenotypes showed heterogeneous engraftment rates, with 71.9% in GPC3+/Ki67+ tumors, 30.8% in GPC3-/Ki67+ tumors, 15.0% in GPC3+/Ki67- tumors, and 0 in GPC3-/Ki67- tumors. CONCLUSIONS: Successful engraftment of HCC PDXs was significantly related to molecular features. Tumors with the GPC3+/Ki67+ phenotype were the most likely to successfully establish HCC PDXs.

17.
Cells ; 10(2)2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669960

RESUMO

Female infertility is mainly caused by ovulation disorders, which affect female reproduction and pregnancy worldwide, with polycystic ovary syndrome (PCOS) being the most prevalent of these. PCOS is a frequent endocrine disease that is associated with abnormal function of the female sex hormone estrogen and estrogen receptors (ERs). Estrogens mediate genomic effects through ERα and ERß in target tissues. The G-protein-coupled estrogen receptor (GPER) has recently been described as mediating the non-genomic signaling of estrogen. Changes in estrogen receptor signaling pathways affect cellular activities, such as ovulation; cell cycle phase; and cell proliferation, migration, and invasion. Over the years, some selective estrogen receptor modulators (SERMs) have made substantial strides in clinical applications for subfertility with PCOS, such as tamoxifen and clomiphene, however the role of ER in PCOS still needs to be understood. This article focuses on the recent progress in PCOS caused by the abnormal expression of estrogen and ERs in the ovaries and uterus, and the clinical application of related targeted small-molecule drugs.


Assuntos
Síndrome do Ovário Policístico/metabolismo , Receptores de Estrogênio/metabolismo , Endométrio/metabolismo , Moduladores de Receptor Estrogênico/metabolismo , Feminino , Humanos , Modelos Biológicos , Ovulação , Síndrome do Ovário Policístico/fisiopatologia , Receptores de Estrogênio/química
19.
Cancer Biomark ; 29(2): 197-206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32623388

RESUMO

BACKGROUND: Precise recipient selection optimizes the prognosis of liver transplantation (LT) for hepatocellular carcinoma (HCC). Alpha-fetoprotein (AFP) is the most commonly used biomarker for diagnosis and prognosis of HCC in the clinical context. As a crucial molecule in methionine cycle, homocysteine (Hcy) level has been proved to be related to HCC progression and metastasis. OBJECTIVE: We aimed to explore the prognostic capacity of pre-transplant serum Hcy level in LT for HCC. METHODS: This study retrospectively enrolled 161 HCC patients who had underwent LT from donation after cardiac death (DCD) in the First Affiliated Hospital of Zhejiang University from 2015.01.01 to 2018.09.01. Pre-transplant serum Hcy level was incorporated into statistical analysis together with other clinical parameters and pathological features. RESULTS: From an overall perspective, significant difference was observed in Hcy level between recurrence (n= 61) and non-recurrence group (n= 100) though subsequent analysis showed unsatisfactory predicting performance. In the whole cohort, multivariate analysis showed that lnAFP (p= 0.010) and Milan criteria (MC, p< 0.001) were independent risk factors of HCC recurrence after LT. MA score based on MC and lnAFP performed well in predicting post-LT tumor recurrence with the AUROC at 0.836 (p< 0.001) and 3-year recurrence-free survival rate at 96.8% (p< 0.001) in the low risk group (n= 69). According to the clinical practice, serum concentration lower than 20 µg/L is considered as normal range of AFP. Elevated pre-transplant serum AFP (> 20 µg/L) predicts high HCC recurrence after LT. We further divided the 161 recipients into AFP- group (n= 77, AFP ⩽ 20 µg/L) and AFP+ group (n= 84, AFP > 20 µg/L). MA score was still well presented in the AFP+ group and the AUROC for tumor recurrence was 0.823 (p< 0.001), whereas the predicting accuracy was reduced in AFP- group (AUROC: 0.754, P< 0.001). After subsequent analysis, we found that elevated pre-transplant Hcy level (> 12.75 µmol/L) predicted increased tumor recurrence risk in AFP- group. The 3-year recurrence-free survival rates were 92.0% and 53.7% (p< 0.001) in low Hcy subgroup (n= 40) and high Hcy subgroup (n= 37) respectively. Multivariate analysis showed that Hcy (p= 0.040) and Milan criteria (p= 0.003) were independent risk factors for post-transplant tumor recurrence in AFP- group. Further combination of Hcy level and Milan criteria identified a subgroup of AFP- recipients with acceptable outcomes even though beyond Milan criteria (3-year recurrence-free survival rate: 77.7%, p< 0.001). CONCLUSION: As a classic predictor in HCC prognosis, AFP performed well in our study cohort when combined with Milan criteria. Homocysteine was an effective prognostic biomarker in LT for AFP- hepatocellular carcinoma. In recipients exceeding Milan criteria, acceptable post-transplant outcome could be seen in those with low Hcy and AFP level.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/cirurgia , Homocisteína/sangue , Neoplasias Hepáticas/cirurgia , Transplante de Fígado , Recidiva Local de Neoplasia/epidemiologia , Adulto , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/prevenção & controle , Seleção de Pacientes , Valor Preditivo dos Testes , Período Pré-Operatório , Prognóstico , Estudos Retrospectivos , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , alfa-Fetoproteínas/análise
20.
Front Cell Dev Biol ; 8: 248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432106

RESUMO

Toll-like receptor 4 (TLR4) is a critical pattern recognition receptor that plays a critical role in the host innate immune system's recognition of Gram-negative bacteria. Since it is the lipopolysaccharide (LPS) receptor, it links the activated inflammatory response with autophagy and oxidative stress. Autophagy, or type II programmed cell death, was reported to have defensive functions in response to the production of inflammatory cytokines and oxidative stress. To explore the relationship between autophagy, inflammation, and oxidative stress, a TLR4-enriched transgenic (Tg) animal model (sheep) was generated. Autophagy activity in the Tg blood monocytes was significantly higher than in the wild-type animal under LPS stress, and it returned to normal after transfection of TLR4 siRNA. Pretreatment with 3-methyladenine (3-MA) inhibited autophagy and enhanced oxidative stress and the production of TNF-α. The LPS-induced reactive oxygen species (ROS) level was markedly increased in the Tg group at an early stage before quickly returning to normal values. In addition, suppressing ROS production by N-acetyl-L-cysteine down-regulated the number of intracellular autophagosomes and the expression of Beclin-1, ATG5, and cytokines IL-1ß, IL-6, and TNF-α. Further mechanistic investigation suggested that the TLR4-associated p38 mitogen-activated protein kinase (MAPK) signaling pathway was involved in autophagy and oxidative stress. P38 MAPK promotes intracellular autophagy, ROS production, and inflammatory response. Moreover, TLR4 over-expression suppressed oxidative stress and the production of inflammatory cytokines and increased autophagy activity in vivo. Taken together, our results showed that LPS induced autophagy, which was related to TLR4-mediated ROS production through the p38 MAPK signaling pathway. In addition, our study also provided a novel transgenic animal model to analyze the effects of TLR4 on autophagy, oxidative stress, and inflammatory responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA