Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826229

RESUMO

Numerous biological processes and diseases are influenced by lipid composition. Advances in lipidomics are elucidating their roles, but analyzing and interpreting lipidomics data at the systems level remain challenging. To address this, we present iLipidome, a method for analyzing lipidomics data in the context of the lipid biosynthetic network, thus accounting for the interdependence of measured lipids. iLipidome enhances statistical power, enables reliable clustering and lipid enrichment analysis, and links lipidomic changes to their genetic origins. We applied iLipidome to investigate mechanisms driving changes in cellular lipidomes following supplementation of docosahexaenoic acid (DHA) and successfully identified the genetic causes of alterations. We further demonstrated how iLipidome can disclose enzyme-substrate specificity and pinpoint prospective glioblastoma therapeutic targets. Finally, iLipidome enabled us to explore underlying mechanisms of cardiovascular disease and could guide the discovery of early lipid biomarkers. Thus, iLipidome can assist researchers studying the essence of lipidomic data and advance the field of lipid biology.

2.
Metab Eng ; 82: 110-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311182

RESUMO

Lipid metabolism is a complex and dynamic system involving numerous enzymes at the junction of multiple metabolic pathways. Disruption of these pathways leads to systematic dyslipidemia, a hallmark of many pathological developments, such as nonalcoholic steatohepatitis and diabetes. Recent advances in computational tools can provide insights into the dysregulation of lipid biosynthesis, but limitations remain due to the complexity of lipidomic data, limited knowledge of interactions among involved enzymes, and technical challenges in standardizing across different lipid types. Here, we present a low-parameter, biologically interpretable framework named Lipid Synthesis Investigative Markov model (LipidSIM), which models and predicts the source of perturbations in lipid biosynthesis from lipidomic data. LipidSIM achieves this by accounting for the interdependency between the lipid species via the lipid biosynthesis network and generates testable hypotheses regarding changes in lipid biosynthetic reactions. This feature allows the integration of lipidomics with other omics types, such as transcriptomics, to elucidate the direct driving mechanisms of altered lipidomes due to treatments or disease progression. To demonstrate the value of LipidSIM, we first applied it to hepatic lipidomics following Keap1 knockdown and found that changes in mRNA expression of the lipid pathways were consistent with the LipidSIM-predicted fluxes. Second, we used it to study lipidomic changes following intraperitoneal injection of CCl4 to induce fast NAFLD/NASH development and the progression of fibrosis and hepatic cancer. Finally, to show the power of LipidSIM for classifying samples with dyslipidemia, we used a Dgat2-knockdown study dataset. Thus, we show that as it demands no a priori knowledge of enzyme kinetics, LipidSIM is a valuable and intuitive framework for extracting biological insights from complex lipidomic data.


Assuntos
Dislipidemias , Hepatopatia Gordurosa não Alcoólica , Humanos , Lipidômica , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Metabolismo dos Lipídeos , Lipídeos
3.
J Biomed Sci ; 28(1): 50, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158025

RESUMO

Cancer immunotherapy has revolutionized treatment and led to an unprecedented wave of immuno-oncology research during the past two decades. In 2018, two pioneer immunotherapy innovators, Tasuku Honjo and James P. Allison, were awarded the Nobel Prize for their landmark cancer immunotherapy work regarding "cancer therapy by inhibition of negative immune regulation" -CTLA4 and PD-1 immune checkpoints. However, the challenge in the coming decade is to develop cancer immunotherapies that can more consistently treat various patients and cancer types. Overcoming this challenge requires a systemic understanding of the underlying interactions between immune cells, tumor cells, and immunotherapeutics. The role of aberrant glycosylation in this process, and how it influences tumor immunity and immunotherapy is beginning to emerge. Herein, we review current knowledge of miRNA-mediated regulatory mechanisms of glycosylation machinery, and how these carbohydrate moieties impact immune cell and tumor cell interactions. We discuss these insights in the context of clinical findings and provide an outlook on modulating the regulation of glycosylation to offer new therapeutic opportunities. Finally, in the coming age of systems glycobiology, we highlight how emerging technologies in systems glycobiology are enabling deeper insights into cancer immuno-oncology, helping identify novel drug targets and key biomarkers of cancer, and facilitating the rational design of glyco-immunotherapies. These hold great promise clinically in the immuno-oncology field.


Assuntos
Biomarcadores , Sistemas de Liberação de Medicamentos/métodos , Glicômica/métodos , Imunoterapia/métodos , MicroRNAs/metabolismo
4.
bioRxiv ; 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32839779

RESUMO

The human microbiota has a close relationship with human disease and it remodels components of the glycocalyx including heparan sulfate (HS). Studies of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike protein receptor binding domain suggest that infection requires binding to HS and angiotensin converting enzyme 2 (ACE2) in a codependent manner. Here, we show that commensal host bacterial communities can modify HS and thereby modulate SARS-CoV-2 spike protein binding and that these communities change with host age and sex. Common human-associated commensal bacteria whose genomes encode HS-modifying enzymes were identified. The prevalence of these bacteria and the expression of key microbial glycosidases in bronchoalveolar lavage fluid (BALF) was lower in adult COVID-19 patients than in healthy controls. The presence of HS-modifying bacteria decreased with age in two large survey datasets, FINRISK 2002 and American Gut, revealing one possible mechanism for the observed increase in COVID-19 susceptibility with age. In vitro , bacterial glycosidases from unpurified culture media supernatants fully blocked SARS-CoV-2 spike binding to human H1299 protein lung adenocarcinoma cells. HS-modifying bacteria in human microbial communities may regulate viral adhesion, and loss of these commensals could predispose individuals to infection. Understanding the impact of shifts in microbial community composition and bacterial lyases on SARS-CoV-2 infection may lead to new therapeutics and diagnosis of susceptibility.

5.
FEBS Lett ; 583(15): 2479-85, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19580811

RESUMO

Development of early embryos is regulated by autocrine/paracrine factors. Analyzing the expression of polypeptide ligand-receptor pairs using DNA microarray datasets, we identified transcripts for artemin, a member of the GDNF (glial cell line-derived neurotrophic factor) family, its receptor GFRA3 (GDNF family receptor-alpha 3) and coreceptor RET. Here we report an autocrine/paracrine role of the artemin-GFRA3 signaling system in regulating early embryonic development and apoptosis. Possible involvement of the MAP kinase signaling pathway was also demonstrated. The genome-wide survey of ligand-receptor pairs and early embryo cultures provided a better understanding of autocrine/paracrine embryonic factors important for optimal blastocyst development.


Assuntos
Comunicação Autócrina/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Blastocisto/fisiologia , Inibidores Enzimáticos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Gravidez , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA