Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Autophagy ; 20(8): 1700-1711, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38497492

RESUMO

Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-ß: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.


Assuntos
Autofagia , Melanoma , Proto-Oncogene Mas , Humanos , Autofagia/fisiologia , Autofagia/genética , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Animais
2.
Curr Treat Options Oncol ; 24(2): 130-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36670319

RESUMO

OPINION STATEMENT: The primordial autophagy process, originally identified as a starvation response in baker's yeast, has since been shown to have a wide spectrum of functions other than survival. In many cases, it is accepted that autophagy operates as a key tumor suppressor mechanism that protects cells from adverse environmental cues by enforcing homeostasis and maintaining the functional and structural integrity of organelles. Paradoxically, heightened states of autophagy are also seen in some cancers, leading to the prevailing view that the pro-survival aspect of autophagy might be hijacked by some tumors to promote their fitness and pathogenesis. Notably, recent studies have revealed a broad range of cell-autonomous autophagy in reshaping tumor microenvironment and maintaining lineage integrity and immune homeostasis, calling for a renewed understanding of autophagy beyond its classical roles in cell survival. Here, we evaluate the increasing body of literature that argues the "double-edged" consequences of autophagy manipulation in cancer therapy, with a particular focus on highly plastic and mutagenic melanoma. We also discuss the caveats that must be considered when evaluating whether autophagy blockade is the effector mechanism of some anti-cancer therapy particularly associated with lysosomotropic agents. If autophagy proteins are to be properly exploited as targets for anticancer drugs, their diverse and complex roles should also be considered.


Assuntos
Antineoplásicos , Melanoma , Neoplasias , Humanos , Neoplasias/terapia , Melanoma/terapia , Melanoma/tratamento farmacológico , Autofagia/fisiologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular , Microambiente Tumoral
3.
Autophagy ; 17(2): 553-577, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32097085

RESUMO

Macroautophagy/autophagy is an auto-digestive pro-survival pathway activated in response to stress to target cargo for lysosomal degradation. In recent years, autophagy has become prominent as an innate antiviral defense mechanism through multiple processes, such as targeting virions and viral components for elimination. These exciting findings have encouraged studies on the ability of autophagy to restrict HIV. However, the role of autophagy in HIV infection remains unclear. Whereas some reports indicate that autophagy is detrimental for HIV, others have claimed that HIV deliberately activates this pathway to increase its infectivity. Moreover, these contrasting findings seem to depend on the cell type investigated. Here, we show that autophagy poses a hurdle for HIV replication, significantly reducing virion production. However, HIV-1 uses its accessory protein Nef to counteract this restriction. Previous studies have indicated that Nef affects autophagy maturation by preventing the fusion between autophagosomes and lysosomes. Here, we uncover that Nef additionally blocks autophagy initiation by enhancing the association between BECN1 and its inhibitor BCL2, and this activity depends on the cellular E3 ligase PRKN. Remarkably, the ability of Nef to counteract the autophagy block is more frequently observed in pandemic HIV-1 and its simian precursor SIVcpz infecting chimpanzees than in HIV-2 and its precursor SIVsmm infecting sooty mangabeys. In summary, our findings demonstrate that HIV-1 is susceptible to autophagy restriction and define Nef as the primary autophagy antagonist of this antiviral process.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin, beta; ATG16L1: autophagy related 16 like 1; BCL2: bcl2 apoptosis regulator; BECN1: beclin 1; cDNA: complementary DNA; EGFP: enhanced green fluorescence protein; ER: endoplasmic reticulum; Gag/p55: group-specific antigen; GFP: green fluorescence protein; GST: glutathione S transferase; HA: hemagglutinin; HIV: human immunodeficiency virus; IP: immunoprecipitation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nef: negative factor; PRKN: parkin RBR E3 ubiquitin ligase; PtdIns3K: phosphatidylinositol 3 kinase; PtdIns3P: phosphatidylinositol 3 phosphate; PTM: post-translational modification; RT-qPCR: reverse transcription followed by quantitative PCR; RUBCN: rubicon autophagy regulator; SEM: standard error of the mean; SERINC3: serine incorporator 3; SERINC5: serine incorporator 5; SIV: simian immunodeficiency virus; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; UVRAG: UV radiation resistance associated gene; VSV: vesicular stomatitis virus; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Assuntos
Autofagia/genética , Proteína Beclina-1/metabolismo , HIV-1/patogenicidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteína Beclina-1/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Lisossomos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética
4.
J Am Chem Soc ; 142(38): 16218-16222, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32881493

RESUMO

The potential applications of metal-organic cages (MOCs) are mostly achieved through specific host-guest interactions within their cavities. Electronic applications would require an effective electron transport pathway, which has been extensively studied in hybrid organic-inorganic materials with extended structures. These properties have not been considered for MOCs because cage-to-cage interactions in these materials have rarely been examined and are challenging to functionalize. We report here a previously unobserved actinide-based MOC assembled from four hexagonal-bipyramidal-coordinated uranyl ions and six bidentate flexible ligands. Remarkably, each isolated cage is further interlocked with six adjacent ones through mechanical bonds, resulting in the first case of a 0D → 3D f-element polycatenated metal-organic cage, SCU-14. Long-range π-π stacking extending throughout the structure is built via polycatenation, providing a visible carrier transmission path. SCU-14 is also an extremely rare case of an intrinsically semiconductive MOC with a wide band gap of 2.61 eV. Combined with the high X-ray attenuation efficiency, SCU-14 can effectively convert X-ray photons to electrical current signals and presents a promising sensitivity of 54.93 µC Gy-1 cm-2.

5.
Nat Commun ; 11(1): 3084, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555153

RESUMO

Tumor-initiating stem-like cells (TICs) are defective in maintaining asymmetric cell division and responsible for tumor recurrence. Cell-fate-determinant molecule NUMB-interacting protein (TBC1D15) is overexpressed and contributes to p53 degradation in TICs. Here we identify TBC1D15-mediated oncogenic mechanisms and tested the tumorigenic roles of TBC1D15 in vivo. We examined hepatocellular carcinoma (HCC) development in alcohol Western diet-fed hepatitis C virus NS5A Tg mice with hepatocyte-specific TBC1D15 deficiency or expression of non-phosphorylatable NUMB mutations. Liver-specific TBC1D15 deficiency or non-p-NUMB expression reduced TIC numbers and HCC development. TBC1D15-NuMA1 association impaired asymmetric division machinery by hijacking NuMA from LGN binding, thereby favoring TIC self-renewal. TBC1D15-NOTCH1 interaction activated and stabilized NOTCH1 which upregulated transcription of NANOG essential for TIC expansion. TBC1D15 activated three novel oncogenic pathways to promote self-renewal, p53 loss, and Nanog transcription in TICs. Thus, this central regulator could serve as a potential therapeutic target for treatment of HCC.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Células-Tronco Neoplásicas/citologia , Receptor Notch1/metabolismo , Adulto , Idoso , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Hepacivirus , Hepatócitos/citologia , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Fosforilação , Receptores Notch/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
6.
Mol Cell Oncol ; 7(2): 1717908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158928

RESUMO

It is not completely understood how autophagy is tied to inflammation and age-related cancer predisposition. Here, we used a mouse model with inducible expression of a cancer-derived frameshift mutation in UV radiation resistance associated (UVRAG) to demonstrate that intervention with autophagy suppressor could exacerbate inflammation and promote age-related spontaneous cancers.

7.
Autophagy ; 16(2): 387-388, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31905312

RESUMO

Macroautophagy/autophagy deregulation has been observed in perpetuated inflammation and the proliferation of tumor cells. However, the mechanisms underlying these changes have yet to be well-identified. UVRAG is one of the key players of autophagy, but its role in vivo remained puzzling. Our recent study utilized a mouse model with inducible expression of a cancer-derived frameshift (FS) mutation in UVRAG that dominant-negatively inhibits wild-type UVRAG, resulting in impaired stimulus-induced autophagy. The systemically compromised autophagy, particularly mitophagy, notably increases inflammation and associated pathologies. Furthermore, our discovery indicates that time-dependent autophagy suppression and ensuing CTNNB1/ß-catenin activation may serve as one tumor-promoting mechanism underpinning age-related cancer susceptibility.


Assuntos
Autofagia , Inflamação/metabolismo , Inflamação/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Autofagossomos/metabolismo , Mutação da Fase de Leitura/genética , Camundongos , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
8.
Autophagy ; 16(9): 1635-1650, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31847700

RESUMO

How lysosome and MTORC1 signaling interact remains elusive in terminally differentiated cells. A G4C2 repeat expansion in C9orf72 is the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS-FTD). We previously identified a C9orf72-SMCR8-containing complex. Here we found that c9orf72 and smcr8 double-knockout (dKO) mice exhibit similar but more severe immune defects than the individual knockouts. In c9orf72 or smcr8 mutant macrophages, lysosomal degradation and exocytosis were impaired due to the disruption of autolysosome acidification. As a result of impaired lysosomal degradation, MTOR protein was aberrantly increased, resulting in MTORC1 signaling overactivation. Inhibition of hyperactive MTORC1 partially rescued macrophage dysfunction, splenomegaly and lymphadenopathy in c9orf72 or smcr8 mutant mice. Pharmacological inhibition of lysosomal degradation upregulated MTOR protein and MTORC1 signaling in differentiated wild-type macrophages, which resemble phenotypes in KO mice. In contrast, C9orf72 or Smcr8 depletion in proliferating macrophages decreased MTORC1 signaling. Our studies causatively link C9orf72-SMCR8's cellular functions in lysosomal degradation, exocytosis, and MTORC1 signaling with their organism-level immune regulation, suggesting cell state (proliferation vs. differentiation)-dependent regulation of MTOR signaling via lysosomes.Abbreviations: ALS: amyotrophic lateral sclerosis; ATG13: autophagy related 13; BMDMs: bone marrow-derived macrophages; BafA1: bafilomycin A1; C9orf72: C9orf72, member of C9orf72-SMCR8 complex; CD68: CD68 antigen; ConA: concanamycin A; dKO: double knockout; DENN: differentially expressed in normal and neoplastic cells; FTD: frontotemporal dementia; GEF: guanine nucleotide exchange factor; IFNB1: interferon beta 1, fibroblast; IFNG: interferon gamma; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; iPSCs: induced pluripotent stem cells; LAMP1: lysosomal-associated membrane protein 1; LPOs: LAMP1-positive organelles; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; LPS: lipopolysaccharide; MTORC1: mechanistic target of rapamycin kinase complex 1; MEFs: mouse embryonic fibroblasts; MNs: motor neurons; NOS2/iNOS: nitric oxide synthase 2, inducible; RAN: repeat-associated non-AUG; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RPS6/S6: ribosomal protein S6; RPS6KB1/S6K1: ribosomal protein S6 kinase, polypeptide 1; SMCR8: Smith-Magenis syndrome chromosome region, candidate 8; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TNF: tumor necrosis factor; TSC1: TSC complex subunit 1; ULK1: unc-51 like kinase 1; v-ATPase: vacuolar-type H⁺-translocating ATPase.


Assuntos
Proteína C9orf72/genética , Proteínas de Transporte/genética , Exocitose , Lisossomos/metabolismo , Mutação/genética , Animais , Autofagossomos/metabolismo , Autofagia , Inflamação/patologia , Linfadenopatia/complicações , Linfadenopatia/patologia , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais , Esplenomegalia/complicações , Esplenomegalia/patologia , Serina-Treonina Quinases TOR/metabolismo
9.
Nat Commun ; 10(1): 5681, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831743

RESUMO

Aberrant autophagy is a major risk factor for inflammatory diseases and cancer. However, the genetic basis and underlying mechanisms are less established. UVRAG is a tumor suppressor candidate involved in autophagy, which is truncated in cancers by a frameshift (FS) mutation and expressed as a shortened UVRAGFS. To investigate the role of UVRAGFS in vivo, we generated mutant mice that inducibly express UVRAGFS (iUVRAGFS). These mice are normal in basal autophagy but deficient in starvation- and LPS-induced autophagy by disruption of the UVRAG-autophagy complex. iUVRAGFS mice display increased inflammatory response in sepsis, intestinal colitis, and colitis-associated cancer development through NLRP3-inflammasome hyperactivation. Moreover, iUVRAGFS mice show enhanced spontaneous tumorigenesis related to age-related autophagy suppression, resultant ß-catenin stabilization, and centrosome amplification. Thus, UVRAG is a crucial autophagy regulator in vivo, and autophagy promotion may help prevent/treat inflammatory disease and cancer in susceptible individuals.


Assuntos
Autofagia/genética , Carcinogênese/genética , Inflamação/genética , Mutação , Proteínas Supressoras de Tumor/genética , Animais , Carcinogênese/patologia , Proliferação de Células , Centrossomo , Colite , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Feminino , Mutação da Fase de Leitura , Inflamassomos , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Inanição , Receptor 4 Toll-Like/metabolismo
10.
Sci Rep ; 9(1): 15108, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641193

RESUMO

Extracellular heat shock protein-90alpha (eHsp90α) plays an essential role in tumour invasion and metastasis. The plasma eHsp90α levels in patients with various cancers correlate with the stages of the diseases. Nonetheless, the mechanism of action by tumour-secreted eHsp90α remained unclear. Here we show that eHsp90α accounts for approximately 1% of the total cellular Hsp90α and is associated with tumour-secreted exosomes. CRISPR-cas9 knockout of Hsp90α did not affect the overall distribution and quantity of secreted exosomes, but it caused increased exosome-associated CD9 and decreased exosome-associated TSG101, Alix, and CD63. However, Hsp90α-knockout tumour cells have not only lost their own constitutive motility, but also the ability to recruit stromal cells via secreted exosomes. These defects are specifically due to the lack of eHsp90α on tumour cell-secreted exosomes. Anti-Hsp90α antibody nullified the pro-motility activity of tumour-secreted exosomes and human recombinant Hsp90α protein fully rescued the functional defects of eHsp90α-free exosomes. Finally, while current exosome biogenesis models exclusively implicate the luminal location of host cytosolic proteins inside secreted exosomes, we provide evidence for eHsp90α location on the external surface of tumour-secreted exosomes. Taken together, this study elucidates a new mechanism of action by exosome-associated eHsp90α.


Assuntos
Comunicação Autócrina , Comunicação Celular , Exossomos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Comunicação Parácrina , Anticorpos Monoclonais/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Exossomos/efeitos dos fármacos , Humanos , Modelos Biológicos , Comunicação Parácrina/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
11.
Autophagy ; 15(10): 1843-1844, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31242070

RESUMO

Although alterations of the macroautophagy/autophagy-lysosome pathway have been observed in cancer for many years, the mechanisms underlying these changes and the importance of autophagic and lysosomal reprogramming by cancer have yet to be well identified. Our recent study demonstrates that oncogenic BRAF signaling promotes melanoma growth and resistance to BRAF-targeted therapy through phosphorylation and functional inactivation of TFEB (transcription factor EB) and consequent suppression of the autophagy-lysosome gene network. This is by no means the first time that this pathway has been directly linked to oncogenic BRAF-driven melanoma. The key observations revealed in this study also leads to a complex but growing convergence of our understanding of the biology of the autophagy-lysosome pathway and the mechanisms underlying cancer prevention and treatment.


Assuntos
Autofagia/fisiologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Substituição de Aminoácidos/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Ácido Glutâmico/genética , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Valina/genética
12.
Nat Commun ; 10(1): 1693, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979895

RESUMO

Autophagy maintains homeostasis and is induced upon stress. Yet, its mechanistic interaction with oncogenic signaling remains elusive. Here, we show that in BRAFV600E-melanoma, autophagy is induced by BRAF inhibitor (BRAFi), as part of a transcriptional program coordinating lysosome biogenesis/function, mediated by the TFEB transcription factor. TFEB is phosphorylated and thus inactivated by BRAFV600E via its downstream ERK independently of mTORC1. BRAFi disrupts TFEB phosphorylation, allowing its nuclear translocation, which is synergized by increased phosphorylation/inactivation of the ZKSCAN3 transcriptional repressor by JNK2/p38-MAPK. Blockade of BRAFi-induced transcriptional activation of autophagy-lysosomal function in melanoma xenografts causes enhanced tumor progression, EMT-transdifferentiation, metastatic dissemination, and chemoresistance, which is associated with elevated TGF-ß levels and enhanced TGF-ß signaling. Inhibition of TGF-ß signaling restores tumor differentiation and drug responsiveness in melanoma cells. Thus, the "BRAF-TFEB-autophagy-lysosome" axis represents an intrinsic regulatory pathway in BRAF-mutant melanoma, coupling BRAF signaling with TGF-ß signaling to drive tumor progression and chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HEK293 , Humanos , Lisossomos/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Confocal , Metástase Neoplásica , Transplante de Neoplasias , Oncogenes , Fosforilação , RNA Interferente Pequeno , Transdução de Sinais , Neoplasias Cutâneas/patologia , Frações Subcelulares , Fator de Crescimento Transformador beta/metabolismo
13.
Autophagy ; 15(2): 366-367, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30209981

RESUMO

Ultraviolet radiation (UVR)-induced skin pigmentation, afforded by the dark organelles termed melanosomes, accounts for the first-line protection against environmental UVR that increases the risk of developing skin cancers including melanoma. We have recently discovered that UVRAG, originally identified as a BECN1-binding macroautophagy/autophagy protein, appears to have a specialized function in melanosome biogenesis beyond autophagy through its interaction with the biogenesis of lysosome-related organelles complex 1 (BLOC-1). This melanogenic function of UVRAG is controlled by the melanocyte-specific transcription factor MITF as a downstream effector of the α-melanocyte-stimulating hormone (α-MSH)-cAMP signaling in the suntan response, which is compromised in BRAF mutant melanoma. Thus we propose a new mode of UVRAG activity and regulation in melanocyte biology that may affect melanoma predisposition.


Assuntos
Pigmentação da Pele , Proteínas Supressoras de Tumor/metabolismo , Proteína Beclina-1 , Humanos , Melaninas/metabolismo , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta
14.
Proc Natl Acad Sci U S A ; 115(33): E7728-E7737, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061422

RESUMO

UV-induced cell pigmentation represents an important mechanism against skin cancers. Sun-exposed skin secretes α-MSH, which induces the lineage-specific transcriptional factor MITF and activates melanogenesis in melanocytes. Here, we show that the autophagic tumor suppressor UVRAG plays an integral role in melanogenesis by interaction with the biogenesis of lysosome-related organelles complex 1 (BLOC-1). This interaction is required for BLOC-1 stability and for BLOC-1-mediated cargo sorting and delivery to melanosomes. Absence of UVRAG dispersed BLOC-1 distribution and activity, resulting in impaired melanogenesis in vitro and defective melanocyte development in zebrafish in vivo. Furthermore, our results establish UVRAG as an important effector for melanocytes' response to α-MSH signaling as a direct target of MITF and reveal the molecular basis underlying the association between oncogenic BRAF and compromised UV protection in melanoma.


Assuntos
Melaninas/biossíntese , Melanossomas/metabolismo , Pigmentação da Pele/efeitos da radiação , Proteínas Supressoras de Tumor/metabolismo , Raios Ultravioleta , Animais , Células HEK293 , Humanos , Melaninas/genética , Melanoma/genética , Melanoma/metabolismo , Melanossomas/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167347

RESUMO

The viral Bcl-2 homolog (vBcl2) of Kaposi's sarcoma-associated herpesvirus (KSHV) displays efficient antiapoptotic and antiautophagic activity through its central BH3 domain, which functions to prolong the life span of virus-infected cells and ultimately enhances virus replication and latency. Independent of its antiapoptotic and antiautophagic activity, vBcl2 also plays an essential role in KSHV lytic replication through its amino-terminal amino acids (aa) 11 to 20. Here, we report a novel molecular mechanism of vBcl2-mediated regulation of KSHV lytic replication. vBcl2 specifically bound the tegument protein open reading frame 55 (ORF55) through its amino-terminal aa 11 to 20, allowing their association with virions. Consequently, the vBcl2 peptide derived from vBcl2 aa 11 to 20 effectively disrupted the interaction between vBcl2 and ORF55, inhibiting the incorporation of the ORF55 tegument protein into virions. This study provides new insight into vBcl2's function in KSHV virion assembly that is separable from its inhibitory role in host apoptosis and autophagy.IMPORTANCE KSHV, an important human pathogen accounting for a large percentage of virally caused cancers worldwide, has evolved a variety of stratagems for evading host immune responses to establish lifelong persistent infection. Upon viral infection, infected cells can go through programmed cell death, including apoptosis and autophagy, which plays an effective role in antiviral responses. To counter the host response, KSHV vBcl2 efficiently blocks apoptosis and autophagy to persist for the life span of virus-infected cells. Besides its anti-programmed-cell-death activity, vBcl2 also interacts with the ORF55 tegument protein for virion assembly in infected cells. Interestingly, the vBcl2 peptide disrupts the vBcl2-ORF55 interaction and effectively inhibits KSHV virion assembly. This study indicates that KSHV vBcl2 harbors at least three genetically separable functions to modulate both host cell death signaling and virion production and that the vBcl2 peptide can be developed as an anti-KSHV therapeutic application.


Assuntos
Herpesvirus Humano 8/fisiologia , Proteínas Oncogênicas/fisiologia , Fases de Leitura Aberta , Proteínas Virais/fisiologia , Montagem de Vírus , Apoptose , Autofagia , Sequência de Bases , Replicação do DNA , DNA Viral/genética , Expressão Gênica , Técnicas de Inativação de Genes , Genoma Viral , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Proteínas Oncogênicas/genética , Proteínas Virais/genética
16.
Mol Cell Biol ; 37(19)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28674187

RESUMO

Secreted exosomes carrying lipids, proteins, and nucleic acids conduct cell-cell communications within the microenvironment of both physiological and pathological conditions. Exosome secretion is triggered by extracellular or intracellular stress signals. Little is known, however, about the signal transduction between stress cues and exosome secretion. To identify the linker protein, we took advantage of a unique finding in human keratinocytes. In these cells, although transforming growth factor alpha (TGF-α) and epidermal growth factor (EGF) share the same EGF receptor and previously indistinguishable intracellular signaling networks, only TGF-α stimulation causes exosome-mediated secretion. However, deduction of EGF-activated pathways from TGFα-activated pathways in the same cells allowed us to identify the proline-rich Akt substrate of 40 kDa (PRAS40) as the unique downstream effector of TGF-α but not EGF signaling via threonine 308-phosphorylated Akt. PRAS40 knockdown (KD) or PRAS40 dominant-negative (DN) mutant overexpression blocks not only TGF-α- but also hypoxia- and H2O2-induced exosome secretion in a variety of normal and tumor cells. Site-directed mutagenesis and gene rescue studies show that Akt-mediated activation of PRAS40 via threonine 246 phosphorylation is both necessary and sufficient to cause exosome secretion without affecting the endoplasmic reticulum/Golgi pathway. Identification of PRAS40 as a linker protein paves the way for understanding how stress regulates exosome secretion under pathophysiological conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/metabolismo , Exossomos/metabolismo , Queratinócitos/citologia , Fator de Crescimento Transformador alfa/metabolismo , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico , Fator de Crescimento Transformador alfa/farmacologia
17.
Cell Death Differ ; 24(2): 276-287, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28141795

RESUMO

Mitochondrial antiviral signaling (MAVS) protein has an important role in antiviral immunity and autoimmunity. However, the pathophysiological role of this signaling pathway, especially in the brain, remains elusive. Here we demonstrated that MAVS signaling existed and mediated poly(I:C)-induced inflammation in the brain. Along with the MAVS signaling activation, there was an induction of autophagic activation. Autophagy negatively regulated the activity of MAVS through direct binding of LC3 to the LIR motif Y(9)xxI(12) of MAVS. We also found that c-Abl kinase phosphorylated MAVS and regulated its interaction with LC3. Interestingly, tyrosine phosphorylation of MAVS was required for downstream signaling activation. Importantly, in vivo data showed that the deficiency of MAVS or c-Abl prevented MPTP-induced microglial activation and dopaminergic neuron loss. Together, our findings reveal the molecular mechanisms underlying the regulation of MAVS-dependent microglial activation in the nervous system, thus providing a potential target for the treatment of microglia-driven inflammatory brain diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Intoxicação por MPTP , Masculino , Camundongos , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Autophagy ; 12(9): 1677-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27439570

RESUMO

Ultraviolet (UV)-induced DNA damage is a major risk factor for skin cancers including melanoma. UVRAG, originally identified to complement UV sensitivity in xeroderma pigmentosum (XP), has since been implicated in modulating macroautophagy/autophagy, in coordinating different intracellular trafficking pathways, and in maintaining chromosomal stability. Intriguingly, our recent study has demonstrated that UVRAG plays an essential role in protecting cells from UV-induced DNA damage by activating the nucleotide excision repair (NER) pathway. Since NER is the major mechanism by which cells maintain DNA integrity against UV insult, the inactivation of UVRAG seen in some melanoma may impart these cells with an ability to accumulate high-load UV mutagenesis, leading to cancer progression. Thus, this property of UVRAG has untapped potential to be of fundamental importance in understanding the genetics and pathogenesis of human skin cancer.


Assuntos
Autofagia , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Raios Ultravioleta , Xeroderma Pigmentoso/metabolismo , Animais , Proteínas Culina/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Mutagênese , Mutação , Fotoquímica , Ubiquitina-Proteína Ligases/metabolismo
19.
Mol Cell ; 62(4): 507-19, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27203177

RESUMO

UV-induced DNA damage, a major risk factor for skin cancers, is primarily repaired by nucleotide excision repair (NER). UV radiation resistance-associated gene (UVRAG) is a tumor suppressor involved in autophagy. It was initially isolated as a cDNA partially complementing UV sensitivity in xeroderma pigmentosum (XP), but this was not explored further. Here we show that UVRAG plays an integral role in UV-induced DNA damage repair. It localizes to photolesions and associates with DDB1 to promote the assembly and activity of the DDB2-DDB1-Cul4A-Roc1 (CRL4(DDB2)) ubiquitin ligase complex, leading to efficient XPC recruitment and global genomic NER. UVRAG depletion decreased substrate handover to XPC and conferred UV-damage hypersensitivity. We confirmed the importance of UVRAG for UV-damage tolerance using a Drosophila model. Furthermore, increased UV-signature mutations in melanoma correlate with reduced expression of UVRAG. Our results identify UVRAG as a regulator of CRL4(DDB2)-mediated NER and suggest that its expression levels may influence melanoma predisposition.


Assuntos
Autofagia/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Melanoma Experimental/enzimologia , Neoplasias Cutâneas/enzimologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Proteólise , Interferência de RNA , Retina/enzimologia , Retina/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
Nat Commun ; 7: 10751, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916619

RESUMO

Recent high-throughput studies revealed recurrent RUNX1 mutations in breast cancer, specifically in oestrogen receptor-positive (ER(+)) tumours. However, mechanisms underlying the implied RUNX1-mediated tumour suppression remain elusive. Here, by depleting mammary epithelial cells of RUNX1 in vivo and in vitro, we demonstrate combinatorial regulation of AXIN1 by RUNX1 and oestrogen. RUNX1 and ER occupy adjacent elements in AXIN1's second intron, and RUNX1 antagonizes oestrogen-mediated AXIN1 suppression. Accordingly, RNA-seq and immunohistochemical analyses demonstrate an ER-dependent correlation between RUNX1 and AXIN1 in tumour biopsies. RUNX1 loss in ER(+) mammary epithelial cells increases ß-catenin, deregulates mitosis and stimulates cell proliferation and expression of stem cell markers. However, it does not stimulate LEF/TCF, c-Myc or CCND1, and it does not accelerate G1/S cell cycle phase transition. Finally, RUNX1 loss-mediated deregulation of ß-catenin and mitosis is ameliorated by AXIN1 stabilization in vitro, highlighting AXIN1 as a potential target for the management of ER(+) breast cancer.


Assuntos
Proteína Axina/genética , Neoplasias da Mama/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/genética , beta Catenina/metabolismo , Animais , Proteína Axina/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ciclina D1 , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células MCF-7 , Camundongos , Proteínas Proto-Oncogênicas c-myc , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição TCF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA