Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(11): 3322-3336, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689971

RESUMO

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.


Assuntos
Anticorpos Monoclonais , Anticorpos Amplamente Neutralizantes , COVID-19 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais , COVID-19/terapia , Dependovirus/genética , RNA Viral , SARS-CoV-2/genética , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Amplamente Neutralizantes/uso terapêutico
2.
J Microbiol Immunol Infect ; 56(3): 506-515, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967265

RESUMO

BACKGROUND: Understanding the neutralizing antibody (NAb) titer against COVID-19 over time is important to provide information for vaccine implementation. The longitudinal NAb titer over one year after SARS-CoV-2 infection is still unclear. The purposes of this study are to evaluate the duration of the neutralizing NAb titers in COVID-19 convalescents and factors associated with the titer positive duration. METHODS: A cohort study followed COVID-19 individuals diagnosed between 2020 and 2021 May 15th from the COVID-19 database from the Taiwan Centers for Disease Control. We analyzed NAb titers from convalescent SARS-CoV-2 individuals. We used generalized estimating equations (GEE) and a Cox regression model to summarize the factors associated with NAb titers against COVID-19 decaying in the vaccine-free population. RESULTS: A total of 203 convalescent subjects with 297 analytic samples were followed for a period of up to 588 days. Our study suggests that convalescent COVID-19 in individuals after more than a year and four months pertains to only 25% of positive titers. The GEE model indicates that longer follow-up duration was associated with a significantly lower NAb titer. The Cox regression model indicated the disease severity with advanced condition was associated with maintaining NAb titers (adjusted hazard ratio: 2.01, 95% CI: 1.11-3.63) and that smoking was also associated with higher risk of negative NAb titers (adjusted hazard ratio: 0.55, 95% CI: 0.33-0.92). CONCLUSIONS: Neutralizing antibody titers diminished after more than a year. The antibody titer response against SARS-CoV-2 in naturally convalescent individuals provides a reference for vaccinations.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudos de Coortes , Taiwan/epidemiologia , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34720095

RESUMO

To explore how the immune system controls clearance of SARS-CoV-2, we used a single-cell, mass cytometry-based proteomics platform to profile the immune systems of 21 patients who had recovered from SARS-CoV-2 infection without need for admission to an intensive care unit or for mechanical ventilation. We focused on receptors involved in interactions between immune cells and virus-infected cells. We found that the diversity of receptor repertoires on natural killer (NK) cells was negatively correlated with the viral clearance rate. In addition, NK subsets expressing the receptor DNAM1 were increased in patients who more rapidly recovered from infection. Ex vivo functional studies revealed that NK subpopulations with high DNAM1 expression had cytolytic activities in response to target cell stimulation. We also found that SARS-CoV-2 infection induced the expression of CD155 and nectin-4, ligands of DNAM1 and its paired coinhibitory receptor TIGIT, which counterbalanced the cytolytic activities of NK cells. Collectively, our results link the cytolytic immune responses of NK cells to the clearance of SARS-CoV-2 and show that the DNAM1 pathway modulates host-pathogen interactions during SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Animais , Antígenos de Diferenciação de Linfócitos T/imunologia , Moléculas de Adesão Celular/imunologia , Estudos de Coortes , Citotoxicidade Imunológica , Feminino , Xenoenxertos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunofenotipagem , Técnicas In Vitro , Ligantes , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Pandemias , Receptores Imunológicos/imunologia , Receptores Virais/imunologia , Carga Viral , Adulto Jovem
4.
Front Immunol ; 12: 739837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721406

RESUMO

We have developed a new binary epitope-presenting CVP platform based on bamboo mosaic virus (BaMV) by using the sortase A (SrtA)-mediated ligation technology. The reconstructed BaMV genome harbors two modifications: 1) a coat protein (CP) with N-terminal extension of the tobacco etch virus (TEV) protease recognition site plus 4 extra glycine (G) residues as the SrtA acceptor; and 2) a TEV protease coding region replacing that of the triple-gene-block proteins. Inoculation of such construct, pKB5G, on Nicotiana benthamiana resulted in the efficient production of filamentous CVPs ready for SrtA-mediated ligation with desired proteins. The second part of the binary platform includes an expression vector for the bacterial production of donor proteins. We demonstrated the applicability of the platform by using the recombinant envelope protein domain III (rEDIII) of Japanese encephalitis virus (JEV) as the antigen. Up to 40% of the BaMV CP subunits in each CVP were loaded with rEDIII proteins in 1 min. The rEDIII-presenting BaMV CVPs (BJLPET5G) could be purified using affinity chromatography. Immunization assays confirmed that BJLPET5G could induce the production of neutralizing antibodies against JEV infections. The binary platform could be adapted as a useful alternative for the development and mass production of vaccine candidates.


Assuntos
Aminoaciltransferases/metabolismo , Antígenos Virais/administração & dosagem , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/prevenção & controle , Endopeptidases/metabolismo , Vacinas contra Encefalite Japonesa/administração & dosagem , Potexvirus/enzimologia , Vírion/enzimologia , Aminoaciltransferases/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas de Bactérias/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/sangue , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Feminino , Vetores Genéticos , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/genética , Vacinas contra Encefalite Japonesa/imunologia , Camundongos Endogâmicos BALB C , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Potexvirus/genética , Potexvirus/imunologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Vírion/genética , Vírion/imunologia
5.
Lancet Respir Med ; 9(12): 1396-1406, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655522

RESUMO

BACKGROUND: MVC-COV1901, a recombinant protein vaccine containing pre-fusion-stabilised spike protein S-2P adjuvanted with CpG 1018 and aluminium hydroxide, has been shown to be well tolerated with a good safety profile in healthy adults aged 20-49 years in a phase 1 trial, and provided a good cellular and humoral immune responses. We present the interim safety, tolerability, and immunogenicity results of a phase 2 clinical trial of the MVC-COV1901 vaccine in Taiwan. METHODS: This is a large-scale, double-blind, randomised, placebo-controlled phase 2 trial done at ten medical centres and one regional hospital in Taiwan. Individuals aged 20 years or older who were generally healthy or had stable pre-existing medical conditions were eligible for enrolment. Exclusion criteria included (but were not limited to) travel overseas within 14 days of screening, intention to travel overseas within 6 months of the screening visit, and the absence of prespecified medical conditions, including immunosuppressive illness, a history of autoimmune disease, malignancy with risk to recur, a bleeding disorder, uncontrolled HIV infection, uncontrolled hepatitis B and C virus infections, SARS-CoV-1 or SARS-CoV-2 infections, an allergy to any vaccine, or a serious medical condition that could interfere with the study. Study participants were randomly assigned (6:1) to receive two doses of either MVC-COV1901 or placebo, administered via intramuscular injection on day 1 and day 29. MVC-COV1901 contained 15 µg of S-2P protein adjuvanted with 750 µg CpG 1018 and 375 µg aluminium hydroxide in a 0·5 mL aqueous solution, and the placebo contained the same volume of saline. Randomisation was done centrally by use of an interactive web response system, stratified by age (≥20 to <65 years and ≥65 years). Participants and investigators were masked to group assignment. The primary outcomes were to evaluate the safety, tolerability, and immunogenicity of MVC-COV1901 from day 1 (the day of the first dose) to day 57 (28 days after the second dose). Safety was assessed in all participants who received at least one dose. Immunogenicity was assessed by measuring geometric mean titres (GMTs) and seroconversion rates of neutralising antibody and antigen-specific IgG in the per-protocol population. This study is registered with ClinicalTrials.gov, NCT04695652. FINDINGS: Of 4173 individuals screened between Dec 30, 2020, and April 2, 2021, 3854 were enrolled and randomly assigned: 3304 to the MVC-COV1901 group and 550 to the placebo group. A total of 3844 participants (3295 in the MVC-COV1901 group and 549 in the placebo group) were included in the safety analysis set, and 1053 participants (903 and 150) had received both doses and were included in the per-protocol immunogenicity analysis set. From the start of this phase 2 trial to the time of interim analysis, no vaccine-related serious adverse events were recorded. The most common solicited adverse events in all study participants were pain at the injection site (2346 [71·2%] of 3295 in the MVC-COV1901 group and 128 [23·3%] of 549 in the placebo group), and malaise or fatigue (1186 [36·0%] and 163 [29·7%]). Fever was rarely reported (23 [0·7%] and two [0·4%]). At 28 days after the second dose of MVC-COV1901, the wild-type SARS-CoV-2 neutralising antibody GMT was 662·3 (95% CI 628·7-697·8; 408·5 IU/mL), the GMT ratio (geometric mean fold increase in titres at day 57 vs baseline) was 163·2 (155·0-171·9), and the seroconversion rate was 99·8% (95% CI 99·2-100·0). INTERPRETATION: MVC-COV1901 has a good safety profile and elicits promising immunogenicity responses. These data support MVC-COV1901 to enter phase 3 efficacy trials. FUNDING: Medigen Vaccine Biologics and Taiwan Centres for Disease Control, Ministry of Health and Welfare.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Vacinas contra COVID-19/imunologia , COVID-19 , Infecções por HIV , Oligodesoxirribonucleotídeos , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Método Duplo-Cego , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Taiwan , Adulto Jovem
6.
PLoS One ; 16(9): e0257191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499677

RESUMO

COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , Vaccinia virus/genética , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Feminino , Imunização Secundária , Pulmão/patologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
7.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379705

RESUMO

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Modelos Animais de Doenças , Células 3T3 , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , Chlorocebus aethiops , Dependovirus/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução Genética , Células Vero
9.
Biomed Pharmacother ; 133: 111037, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249281

RESUMO

COVID-19 is a global pandemic, with over 50 million confirmed cases and 1.2 million deaths as of November 11, 2020. No therapies or vaccines so far are recommended to treat or prevent the new coronavirus. A novel traditional Chinese medicine formula, Taiwan Chingguan Yihau (NRICM101), has been administered to patients with COVID-19 in Taiwan since April 2020. Its clinical outcomes and pharmacology have been evaluated. Among 33 patients with confirmed COVID-19 admitted in two medical centers, those (n = 12) who were older, sicker, with more co-existing conditions and showing no improvement after 21 days of hospitalization were given NRICM101. They achieved 3 consecutive negative results within a median of 9 days and reported no adverse events. Pharmacological assays demonstrated the effects of the formula in inhibiting the spike protein/ACE2 interaction, 3CL protease activity, viral plaque formation, and production of cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. This bedside-to-bench study suggests that NRICM101 may disrupt disease progression through its antiviral and anti-inflammatory properties, offering promise as a multi-target agent for the prevention and treatment of COVID-19.


Assuntos
Antivirais/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Proteases 3C de Coronavírus/efeitos dos fármacos , Composição de Medicamentos , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Interleucina-6/antagonistas & inibidores , Masculino , Medicina Tradicional Chinesa , Pessoa de Meia-Idade , Resultados Negativos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Ensaio de Placa Viral , Adulto Jovem
10.
Emerg Microbes Infect ; 7(1): 187, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30459406

RESUMO

The genus Flavivirus contains many important pathogens, including dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV). AR-12 is a celecoxib-derived anticancer agent that possesses antiviral activity against a broad range of viruses. We pharmacologically exploited this unique activity to develop additional antiviral agents, resulting in the production of the AR-12 derivatives P12-23 and P12-34. At nanomolar concentrations, these compounds were effective in suppressing DENV, ZIKV and JEV replication, exhibiting 10-fold improvements in the efficacy and selectivity indices as compared to AR-12. Regarding the mode of antiviral action, P12-23 and P12-34 inhibited viral RNA replication but had no effect on viral binding, entry or translation. Moreover, these AR-12 derivatives co-localized with mitochondrial markers, and their antiviral activity was lost in mitochondria-depleted cells. Interestingly, exogenous uridine or orotate, the latter being a metabolite of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH), abolished the antiviral activity of AR-12 and its derivatives. As DHODH is a key enzyme in the de novo pyrimidine biosynthesis pathway, these AR-12 derivatives may act by targeting pyrimidine biosynthesis in host cells to inhibit viral replication. Importantly, treatment with P12-34 significantly improved the survival of mice that were subcutaneously challenged with DENV. Thus, P12-34 may warrant further evaluation as a therapeutic to control flaviviral outbreaks.


Assuntos
Flavivirus/fisiologia , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/biossíntese , Sulfonamidas/química , Sulfonamidas/farmacologia , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Antivirais/farmacologia , Vias Biossintéticas , Linhagem Celular , Vírus da Dengue/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Flavivirus/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Uridina/farmacologia , Zika virus/efeitos dos fármacos
11.
Elife ; 72018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30334522

RESUMO

Dengue fever is caused by four different serotypes of dengue virus (DENV) which is the leading cause of worldwide arboviral diseases in humans. Virus-like particles (VLPs) containing flavivirus prM/E proteins have been demonstrated to be a potential vaccine candidate; however, the structure of dengue VLP is poorly understood. Herein VLP derived from DENV serotype-2 were engineered becoming highly matured (mD2VLP) and showed variable size distribution with diameter of ~31 nm forming the major population under cryo-electron microscopy examination. Furthermore, mD2VLP particles of 31 nm diameter possess a T = 1 icosahedral symmetry with a groove located within the E-protein dimers near the 2-fold vertices that exposed highly overlapping, cryptic neutralizing epitopes. Mice vaccinated with mD2VLP generated higher cross-reactive (CR) neutralization antibodies (NtAbs) and were fully protected against all 4 serotypes of DENV. Our results highlight the potential of 'epitope-resurfaced' mature-form D2VLPs in inducing quaternary structure-recognizing broad CR NtAbs to guide future dengue vaccine design.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Epitopos/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Vírus da Dengue/classificação , Vírus da Dengue/ultraestrutura , Epitopos/química , Feminino , Imunização , Camundongos Endogâmicos BALB C , Sorotipagem , Solventes , Análise de Sobrevida , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
12.
Artigo em Inglês | MEDLINE | ID: mdl-30042931

RESUMO

The major structural envelope (E) protein of Japanese encephalitis virus (JEV) facilitates cellular binding/entry and is the primary target of neutralizing antibodies. JEV E protein has one N-linked glycosylation site at N154 (G2 site), but the related dengue virus E protein has two glycosylation sites at N67 (G1 site) and N153 (G2 site). We generated three recombinant JEVs with different glycosylation patterns on the E protein. As compared with wild-type (WT) JEV with G2 glycosylation, viral growth in culture cells as well as neurovirulence and neuroinvasiveness in challenged mice were reduced when infected with the G1 mutant (E-D67N/N154A) with glycosylation shifted to G1 site, and the G0 mutant (E-N154A) with non-glycosylation. The G1G2 mutant (E-D67N), with E-glycosylation on both G1 and G2 sites, showed potent in vitro viral replication and in vivo neurovirulence, but reduced neuroinvasiveness. Furthermore, the JEV mutants with G1 glycosylation showed enhanced DC-SIGN binding, which may then lead to reduced brain invasion and explain the reason why WT JEV is devoid of this G1 site of glycosylation. Overall, the patterns of N-linked glycosylation on JEV E proteins may affect viral interaction with cellular lectins and contribute to viral replication and pathogenesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Interações Hospedeiro-Patógeno , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Encefalite Japonesa/patologia , Glicosilação , Camundongos , Ligação Proteica , Virulência , Replicação Viral
13.
PLoS Pathog ; 11(3): e1004750, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25816318

RESUMO

Infection with Japanese encephalitis virus (JEV) can induce the expression of pro-inflammatory cytokines and cause acute encephalitis in humans. ß-oxidation breaks down fatty acids for ATP production in mitochondria, and impaired ß-oxidation can induce pro-inflammatory cytokine expression. To address the role of fatty-acid ß-oxidation in JEV infection, we measured the oxygen consumption rate of mock- and JEV-infected cells cultured with or without long chain fatty acid (LCFA) palmitate. Cells with JEV infection showed impaired LCFA ß-oxidation and increased interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) expression. JEV nonstructural protein 5 (NS5) interacted with hydroxyacyl-CoA dehydrogenase α and ß subunits, two components of the mitochondrial trifunctional protein (MTP) involved in LCFA ß-oxidation, and NS5 proteins were detected in mitochondria and co-localized with MTP. LCFA ß-oxidation was impaired and higher cytokines were induced in cells overexpressing NS5 protein as compared with control cells. Deletion and mutation studies showed that the N-terminus of NS5 was involved in the MTP association, and a single point mutation of NS5 residue 19 from methionine to alanine (NS5-M19A) reduced its binding ability with MTP. The recombinant JEV with NS5-M19A mutation (JEV-NS5-M19A) was less able to block LCFA ß-oxidation and induced lower levels of IL-6 and TNF-α than wild-type JEV. Moreover, mice challenged with JEV-NS5-M19A showed less neurovirulence and neuroinvasiveness. We identified a novel function of JEV NS5 in viral pathogenesis by impairing LCFA ß-oxidation and inducing cytokine expression by association with MTP.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/metabolismo , Ácidos Graxos/metabolismo , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/genética , Ácidos Graxos/genética , Células HEK293 , Humanos , Camundongos , Subunidade alfa da Proteína Mitocondrial Trifuncional/genética , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Oxirredução , Mutação Puntual , Proteínas não Estruturais Virais/genética
14.
J Virol ; 86(19): 10347-58, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22787234

RESUMO

Japanese encephalitis virus (JEV) is an enveloped flavivirus with a single-stranded, positive-sense RNA genome encoding three structural and seven nonstructural proteins. To date, the role of JEV nonstructural protein 2A (NS2A) in the viral life cycle is largely unknown. The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) phosphorylates the eukaryotic translation initiation factor 2α subunit (eIF2α) after sensing viral RNA and results in global translation arrest as an important host antiviral defense response. In this study, we found that JEV NS2A could antagonize PKR-mediated growth inhibition in a galactose-inducible PKR-expressing yeast system. In human cells, PKR activation, eIF2α phosphorylation, and the subsequent translational inhibition and cell death triggered by dsRNA and IFN-α were also repressed by JEV NS2A. Moreover, among the four eIF2α kinases, NS2A specifically blocked the eIF2α phosphorylation mediated by PKR and attenuated the PKR-promoted cell death induced by the chemotherapeutic drug doxorubicin. A single point mutation of NS2A residue 33 from Thr to Ile (T33I) abolished the anti-PKR potential of JEV NS2A. The recombinant JEV mutant carrying the NS2A-T33I mutation showed reduced in vitro growth and in vivo virulence phenotypes. Thus, JEV NS2A has a novel function in blocking the host antiviral response of PKR during JEV infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/metabolismo , Regulação Viral da Expressão Gênica , RNA de Cadeia Dupla/metabolismo , Proteínas Virais/química , eIF-2 Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Ativação Enzimática , Genes Reporter , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Plasmídeos/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas Virais/metabolismo , eIF-2 Quinase/metabolismo
15.
Cell Microbiol ; 13(9): 1358-70, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21707907

RESUMO

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes acute encephalitis with high mortality in humans. We used a pair of virulent (RP-9) and attenuated (RP-2ms) variants of JEV to pull down the cell surface molecules bound with JEV particle; their identities were revealed by LC-MS/MS analysis. One major protein bound with RP-9 and weakly with RP-2ms was identified as the intermediate filament protein vimentin. Infection of RP-9 but not that of RP-2ms was blocked by anti-vimentin antibodies and by recombinant-expressed vimentin proteins. Knockdown of vimentin expression reduced the levels of viral binding and viral production of RP-9, but not that of RP-2ms. The different vimentin dependency for JEV infection could be attributed to the major structural envelope protein, as the recombinant RP-9 with an E-E138K mutation became resistant to anti-vimentin blockage. Furthermore, RP-2ms mainly depended on cell surface glycosaminoglycans for viral binding and it became vimentin-dependent only when binding to glycosaminoglycans was blocked. Thus, we suggest that vimentin contributes to virulent JEV infection and might be a new target to intervene in this deadly infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/metabolismo , Vimentina/metabolismo , Animais , Linhagem Celular Tumoral , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Glicosaminoglicanos/metabolismo , Humanos , Camundongos , Ligação Proteica , Vimentina/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Virulência
16.
Vaccine ; 27(21): 2746-54, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19366580

RESUMO

Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes acute encephalitis with high mortality in humans. To understand the virus-host interactions that influence JEV virulence, we determined the lethality of a neurovirulent (RP-9) and an attenuated (RP-2ms) variant of JEV in several immunodeficient mice strains. The attenuated phenotype of RP-2ms was completely lost in Stat-1-deficient mice, but its virulence was only slightly increased in mice lacking the components of adaptive immunity, suggesting an important role of the interferon (IFN) system in controlling JEV infection. Cell-based assays demonstrated that RP-2ms is more sensitive to IFN-alpha treatment; however, the NS5 protein of RP-2ms was still a potent antagonist of IFN, like RP-9 NS5. Using a recombinant infectious clone of RP-9, we found that a single Glu-->Lys mutation at residue 138 of the envelope protein (E-E138K) rendered the mutated RP-9 sensitive to the antiviral effect of IFN-alpha. Furthermore, IFN signaling was blocked earlier in the RP-9-infected cells relative to that in cells infected with RP-2ms or recombinant RP-9 bearing the E-E138K mutation. Thus, the E-E138K mutation of JEV appears to affect the viral growth properties, leading to a reduced efficiency in blocking IFN signaling, which then results in an attenuated phenotype in inoculated animals.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/imunologia , Interferons/antagonistas & inibidores , Interferons/imunologia , Vacinas contra Encefalite Japonesa/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Culicidae , Vírus da Encefalite Japonesa (Espécie)/classificação , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Transdução de Sinais/imunologia , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA