Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thorac Oncol ; 19(8): 1186-1200, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38553005

RESUMO

INTRODUCTION: EGFR-mutated NSCLC is characterized by an immunosuppressive microenvironment that confers limited clinical effectiveness to anti-PD-1 or PD-L1 antibodies. Despite the discouraging outcomes of immunotherapy, novel immune checkpoints are constantly emerging, among which the specific vulnerability for therapeutic intervention in the context of EGFR-mutated NSCLC remains unresolved. METHODS: Data sets of patient- and cell line-levels were used for screening and mutual validation of association between EGFR mutation and a panel of immune checkpoint-related genes. Regulatory mechanism was elucidated through in vitro manipulation of EGFR signaling pathway and evaluated by immunoblot analysis, quantitative polymerase chain reaction, flow cytometry, immunofluorescence staining, and chromatin immunoprecipitation. In vivo investigation of different therapeutic strategies were conducted using both immunocompetent and immunodeficient mouse models. RESULTS: Among all screened immune checkpoints, CD47 emerged as the candidate most relevant to EGFR activation. Mechanistically, EGFR mutation constitutively activated downstream ERK and AKT pathways to respectively up-regulate the transcriptional factors c-Myc and NF-κB, both of which structurally bound to the promotor region of CD47 and actively transcribed this "don't eat me" signal. Impaired macrophage phagocytosis was observed on introduction of EGFR-sensitizing mutations in NSCLC cell line models, whereas CD47 blockade restored the phagocytic capacity and augmented tumor cell killing in both in vitro and in vivo models. Remarkably, the combination of anti-CD47 antibody with EGFR tyrosine kinase inhibitor revealed an additive antitumor activity compared with monotherapy of either antitumor agent in both immunocompetent and adaptive immunity-deficient mouse models. CONCLUSIONS: EGFR-sensitizing mutation facilitates NSCLC's escape from innate immune attack through up-regulating CD47. Combination therapy incorporating CD47 blockade holds substantial promise for clinical translation in developing more effective therapeutic approaches against EGFR-mutant NSCLC.


Assuntos
Antígeno CD47 , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Macrófagos , Mutação , Fagocitose , Regulação para Cima , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antígeno CD47/genética , Humanos , Camundongos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Receptores ErbB/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Imunidade Inata , Evasão da Resposta Imune , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Angew Chem Int Ed Engl ; 59(31): 12868-12875, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32289203

RESUMO

Herein, we report a theoretical and experimental study of the water-gas shift (WGS) reaction on Ir1 /FeOx single-atom catalysts. Water dissociates to OH* on the Ir1 single atom and H* on the first-neighbour O atom bonded with a Fe site. The adsorbed CO on Ir1 reacts with another adjacent O atom to produce CO2 , yielding an oxygen vacancy (Ovac ). Then, the formation of H2 becomes feasible due to migration of H from adsorbed OH* toward Ir1 and its subsequent reaction with another H*. The interaction of Ir1 and the second-neighbouring Fe species demonstrates a new WGS pathway featured by electron transfer at the active site from Fe3+ -O⋅⋅⋅Ir2+ -Ovac to Fe2+ -Ovac ⋅⋅⋅Ir3+ -O with the involvement of Ovac . The redox mechanism for WGS reaction through a dual metal active site (DMAS) is different from the conventional associative mechanism with the formation of formate or carboxyl intermediates. The proposed new reaction mechanism is corroborated by the experimental results with Ir1 /FeOx for sequential production of CO2 and H2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA