Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 28(10): 276, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37919073

RESUMO

BACKGROUND: Colon adenocarcinoma (COAD) is a major cause of cancer mortality worldwide. The occurrence and development of colon cancer is regulated by complex mechanisms that require further exploration. Recently, long non-coding RNAs (lncRNAs) were found to be related to the mortality of colon cancer patients through their participation in competing endogenous RNA (ceRNA) networks. Therefore, screening the lncRNAs involved in colon cancer may contribute to clarifying the complex mechanisms. METHODS: In this study, we explored the potential lncRNAs associated with colon cancer by establishing a ceRNA network using bioinformatics, followed by biological verification. RESULTS: RP11-197K6.1 and RP11-400N13.3 were screened out owing to their involvement in the expression of CDK2NA, a gene that potentially prevents colon cancer cells from high oxygen levels. CONCLUSIONS: Our work explored the mechanisms of recurrence and metastasis in colon cancer and provided potential targets for drug development.


Assuntos
Adenocarcinoma , Neoplasias do Colo , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adenocarcinoma/genética , Redes Reguladoras de Genes , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Biomarcadores Tumorais/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica
2.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275631

RESUMO

Breast cancer, especially the aggressive triple-negative subtype, poses a serious health threat to women. Unfortunately, effective targets are lacking, leading to a grim prognosis. Research highlights the crucial role of c-MYC overexpression in this form of cancer. Current inhibitors targeting c-MYC focus on stabilizing its G-quadruplex (G4) structure in the promoter region. They can inhibit the expression of c-MYC, which is highly expressed in triple-negative breast cancer (TNBC), and then regulate the apoptosis of breast cancer cells induced by intracellular ROS. However, the clinical prospects for the application of such inhibitors are not promising. In this research, we designed and synthesized 29 acridone derivatives. These compounds were assessed for their impact on intracellular ROS levels and cell activity, followed by comprehensive QSAR analysis and molecular docking. Compound N8 stood out, significantly increasing ROS levels and demonstrating potent anti-tumor activity in the TNBC cell line, with excellent selectivity shown in the docking results. This study suggests that acridone derivatives could stabilize the c-MYC G4 structure. Among these compounds, the small molecule N8 shows promising effects and deserves further investigation.

3.
Bioorg Chem ; 119: 105547, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906858

RESUMO

CDK4/6 were attractive chemotherapeutic targets for the treatment of malignant tumors, CDK4/6 selective inhibitors have made outstanding contributions in the treatment of breast cancer. However, these inhibitors share a single skeleton of N-(pyridin-2-yl) pyrimidin-2-amine which cannot overcome the side effects in clinical application. In our previous study, an N'- acetylpyrrolidine-1-carbohydrazide was hit as the initial fragment by analyzing the active site characteristics of CDK6. Two series of N-(pyridin-3-yl) proline were obtained by fragment growth method. The QSAR study was carried out according to the in vitro activities data against CDK4/6, and two compounds 7c and 7p with potent inhibitory activities were found to interact with CDK4 in different binding conformation. They showed potential inhibition of cell proliferation against the breast cancer cell, and 7c exhibited promised anti-breast cancer effect in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Prolina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Prolina/síntese química , Prolina/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 210: 112988, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189438

RESUMO

The molecular chaperone heat shock protein 90 (Hsp90) is a promising target for cancer therapy. Natural product aconitine is a potential Hsp90 inhibitor reported in our previous work. In this study, we designed and synthesized a series of 2-((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)-2-azabicyclo[3.2.1]octan-3-one derivatives as potent Hsp90 inhibitors by simplifying and modifying aconitine scaffold. Among these compounds, 14t exhibited an excellent antiproliferative activity against LoVo cells with an IC50 value of 0.02 µM and a significant Hsp90α inhibitory activity with an IC50 value of 0.71 nM. Molecular docking studies provided a rational binding model of 14t in complex with Hsp90α. The following cell cycle and apoptosis assays revealed that compound 14t could arrest cell cycle at G1/S phase and induce cell apoptosis via up-regulation of bax and cleaved-caspase 3 protein expressions while inhibiting the expressions of bcl-2. Moreover, 14t could inhibit cell migration in LoVo and SW620 cell lines. Consistent with in vitro results, 14t significantly repressed tumor growth in the SW620 xenograft mouse model.


Assuntos
Aconitina/farmacologia , Antineoplásicos/farmacologia , Descoberta de Drogas , Aconitina/síntese química , Aconitina/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos Aza/síntese química , Compostos Aza/química , Compostos Aza/farmacologia , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Octanos/síntese química , Octanos/química , Octanos/farmacologia , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologia
5.
J Enzyme Inhib Med Chem ; 35(1): 468-477, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31902266

RESUMO

C-Met plays a crucial role in the development and progression of neoplastic disease. Type II c-Met inhibitors recognise the inactive DFG-out conformation of the kinase, result in better anti-tumour effects due to synergistic effect against the other kinases. According to our previous works, an (E)-N'-benzylidene group was selected as the initial fragment. Two series of (E)-N'-benzylidene hydrazides were designed by fragment growth method. The inhibitory activities were in vitro investigated against c-Met and VEGFR-2. Compound 10b exhibited the most potent inhibitory activity against the c-Met inhibitor (IC50 = 0.37 nM). Compound 11b exhibited multi-target c-Met kinase inhibitory activity as a potential type II c-Met inhibitor (IC50 = 3.41 nM against c-Met; 25.34 nM against VEGFR-2). The two compounds also demonstrate the feasibility of fragment-based virtual screening method for drug discovery.


Assuntos
Compostos de Benzilideno/síntese química , Compostos de Benzilideno/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Compostos de Benzilideno/química , Descoberta de Drogas , Humanos , Inibidores de Proteínas Quinases/química , Relação Quantitativa Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
6.
Front Oncol ; 10: 616628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425771

RESUMO

In this study, a combination of network pharmacology, bioinformatics analysis, molecular docking and transcriptomics was used to investigate the active ingredient and potential target of Gelsemium elegans in the treatment of colorectal cancer. Koumine was screened as the active component by targeting PDK1 through network pharmacology and reverse docking. RNA-Seq, enrichment analysis and validation experiment were then further employed to reveal koumine might function in inhibiting Akt/mTOR/HK2 pathway to regulate cell glycolysis and detachment of HK2 from mitochondria and VDAC-1 to activate cell apoptosis both in vitro and in vivo. In the present study, we provide a systematical approach for the identification of effective ingredient and potential target of herbal medicine. Our results have important implication for the intensive study of koumine as novel anticancer agents for colorectal cancer and could be supportive in its further structural modification.

7.
Bioorg Chem ; 94: 103385, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669094

RESUMO

A series of homoerythrina alkaloid derivatives containing a 1,2,3-triazole moiety as PARP-1 inhibitors were designed and synthesized. And their anti-proliferative activity was further evaluated. Compound 10n had excellent activity to inhibit proliferation of A549 cells (IC50 = 1.89 µM), which was higher than harringtonine (IC50 = 10.55 µM), pemetrexed (IC50 = 3.39 µM), and rucaparib (IC50 = 4.91 µM). Furthermore, the selectivity index of compound 10n was higher than rucaparib and pemetrexed for lung cancer cells. Flow cytometry analysis showed that compound 10n significantly arrested the cell cycle in the S phase, then induced apoptosis of A549 cells (apoptosis rate is 46%), which effectively inhibited cell proliferation. Simultaneously, western blot analysis revealed that compound 10n could prevent the biosynthesis of PAR. Further analysis results revealed that compound 10n could inhibit the expression of cyclin A, down-regulate the expression of bcl-2/bax, activate caspase-3, and ultimately induce apoptosis of A549 cells. All the results indicated that compound 10n had potential research value as a novel PARP-1 inhibitor in antitumor, and it provided a new reference for further development of PARP-1 inhibitors.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Triazóis/farmacologia , Alcaloides/síntese química , Alcaloides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Relação Estrutura-Atividade , Triazóis/química , Células Tumorais Cultivadas
8.
J Enzyme Inhib Med Chem ; 35(1): 235-244, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31760818

RESUMO

Cyclin-dependent kinase 2 (CDK2) is the family of Ser/Thr protein kinases that has emerged as a highly selective with low toxic cancer therapy target. A multistage virtual screening method combined by SVM, protein-ligand interaction fingerprints (PLIF) pharmacophore and docking was utilised for screening the CDK2 inhibitors. The evaluation of the validation set indicated that this method can be used to screen large chemical databases because it has a high hit-rate and enrichment factor (80.1% and 332.83 respectively). Six compounds were screened out from NCI, Enamine and Pubchem database. After molecular dynamics and binding free energy calculation, two compounds had great potential as novel CDK2 inhibitors and they also showed selective inhibition against CDK2 in the kinase activity assay.


Assuntos
Antineoplásicos/análise , Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/farmacologia , Máquina de Vetores de Suporte , Células A549 , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795217

RESUMO

Phosphoinositide 3 kinase delta (PI3Kδ) is a lipid kinase that has been implicated in a variety of immune mediated disorders. The research on isoform selectivity was crucial for reducing side effects. In the current study, an optimized hierarchical multistage virtual screening method was utilized for screening the PI3Kδ selective inhibitors. The method sequentially applied a support vector machine (SVM), a protein ligand interaction fingerprint (PLIF) pharmacophore, and a molecular docking approach. The evaluation of the validation set showed a high hit rate and a high enrichment factor of 75.1% and 301.66, respectively. This multistage virtual screening method was then utilized to screen the NCI database. From the final hit list, Compound 10 has great potential as the PI3Kδ inhibitor with micromolar inhibition in the PI3Kδ kinase activity assay. This compound also shows selectivity against PI3Kδ kinase. The method combining SVM, pharmacophore, and docking was capable of screening out the compounds with potential PI3Kδ selective inhibitors. Moreover, structural modification of Compound 10 will contribute to investigating the novel scaffold and designing novel PI3Kδ inhibitors.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Descoberta de Drogas/métodos , Humanos , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química , Máquina de Vetores de Suporte
10.
Mar Drugs ; 17(1)2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642059

RESUMO

Marine animals and plants provide abundant secondary metabolites with antitumor activity. Itampolin A is a brominated natural tyrosine secondary metabolite that is isolated from the sponge Iotrochota purpurea. Recently, we have achieved the first total synthesis of this brominated tyrosine secondary metabolite, which was found to be a potent p38α inhibitor exhibiting anticancer effects. A fragment-based drug design (FBDD) was carried out to optimize itampolin A. Forty-five brominated tyrosine derivatives were synthesized with interesting biological activities. Then, a QSAR study was carried out to explore the structural determinants responsible for the activity of brominated tyrosine skeleton p38α inhibitors. The lead compound was optimized by a FBDD method, then three series of brominated tyrosine derivatives were synthesized and evaluated for their inhibitory activities against p38α and tumor cells. Compound 6o (IC50 = 0.66 µM) exhibited significant antitumor activity against non-small cell lung A549 cells (A549). This also demonstrated the feasibility of the FBDD method of structural optimization.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Desenho de Fármacos , Neoplasias Pulmonares/tratamento farmacológico , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Poríferos , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios Enzimáticos , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/patologia , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
Eur J Med Chem ; 154: 267-279, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29807332

RESUMO

The Inhibition of cellular nucleotide metabolism to promote apoptosis is a key principle of cancer therapy. Thymidylate synthase (TS) is a key rate-limiting enzyme in the initiation of DNA synthesis in cell. Here, we presented two types of thymidylate synthase inhibitors, and, the key pharmacological properties of these two types of thymidylate synthase inhibitor were extracted and combined to design new compounds with inhibitory activity. Therefore, two series of 42 new compounds with the common biological effect of promoting apoptosis are designed and synthesized by combination principle. Most of the compounds had good anti-proliferative activity on A549, OVCAR-3, SGC7901 and MDA-MB-231 cells. The IC50 of compound 10l on A549 cells was 1.26 µM, which was better than that of pemetrexed (PTX, IC50 = 3.31 µM), furthermore, the selection index of compound 10l was higher than PTX. Flow cytometry analysis showed that compound 10l (the apoptosis rate is 39.4%) could induce A549 cell apoptosis and effectively inhibit tumor cell proliferation. Further western blot analysis showed that compound 10l could induce intrinsic apoptosis by activating caspase-3, increasing expression of cleaved caspase-3 and reducing the ratio of bcl-2/bax. All of this makes compound 10l to be a promising compound in future animal tumor models.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Sulfonamidas/farmacologia , Timidilato Sintase/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Timidilato Sintase/metabolismo , Células Tumorais Cultivadas
12.
Int J Mol Sci ; 19(3)2018 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-29562629

RESUMO

A series of imidazolium salt derivatives have demonstrated potent antitumor activity in prior research. A comprehensive in silicon method was carried out to identify the putative protein target and detailed structure-activity relationship of the compounds. The Topomer CoMFA and CoMSIA techniques were implemented during the investigation to obtain the relationship between the properties of the substituent group and the contour map of around 77 compounds; the Topomer CoMFA and CoMSIA models were reliable with the statistical data. The protein-protein interaction network was constructed by combining the Pharmmapper platform and STRING database. After generating the sub-network, the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA with protein data bank ID: 3ZIM) was selected as the putative target of imidazolium salt derivatives. A docking study was carried out to correlate interactions of amino acids in protein active pockets surrounded by the ligand with contour maps generated by the structure-activity relationship method. Then the molecular dynamics simulations demonstrated that the imidazolium salt derivatives have potent binding capacity and stability to receptor 3ZIM, and the two ligand-receptor complex was stable in the last 2 ns. Finally, the ligand-based structure-activity relationship and receptor-based docking were combined together to identify the structural requirement of the imidazolium salt derivatives, which will be used to design and synthesize the novel PIK3CA inhibitors.


Assuntos
Antineoplásicos/química , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Imidazóis/química , Simulação de Acoplamento Molecular/métodos , Antineoplásicos/farmacologia , Sítios de Ligação , Classe I de Fosfatidilinositol 3-Quinases/química , Bases de Dados de Proteínas , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Ligantes , Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas , Relação Quantitativa Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 28(5): 847-852, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29456106

RESUMO

Rucaparib and PJ34 were used as the structural model for the design of novel 5H-dibenzo[b,e]azepine-6,11-dione derivatives containing 1,3,4-oxadiazole units. And target compounds were successfully synthesized through a 3-step synthetic strategy. All target compounds were screened for their anti-proliferative effects against OVCAR-3 cell line. Preliminary biological study of these compounds provided potent compounds d21 and d22 with better activities than Rucaparib.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Desenho de Fármacos , Oxidiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Azepinas/síntese química , Azepinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oxidiazóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA