Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; 57(4): e13564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37853840

RESUMO

'Human neural stem cells' jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human neural stem cells (hNSCs) in China. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for hNSCs, which is applicable to the quality control for hNSCs. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that publication of the guideline will facilitate institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of hNSCs for clinical development and therapeutic applications.


Assuntos
Células-Tronco Neurais , Transplante de Células-Tronco , Humanos , Diferenciação Celular , China
2.
Cell Regen ; 12(1): 24, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378693

RESUMO

Intestinal cancer is one of the most frequent and lethal types of cancer. Modeling intestinal cancer using organoids has emerged in the last decade. Human intestinal cancer organoids are physiologically relevant in vitro models, which provides an unprecedented opportunity for fundamental and applied research in colorectal cancer. "Human intestinal cancer organoids" is the first set of guidelines on human intestinal organoids in China, jointly drafted and agreed by the experts from the Chinese Society for Cell Biology and its branch society: the Chinese Society for Stem Cell Research. This standard specifies terms and definitions, technical requirements, test methods for human intestinal cancer organoids, which apply to the production and quality control during the process of manufacturing and testing of human intestinal cancer organoids. It was released by the Chinese Society for Cell Biology on 24 September 2022. We hope that the publication of this standard will guide institutional establishment, acceptance and execution of proper practocal protocols, and accelerate the international standardization of human intestinal cancer organoids for clinical development and therapeutic applications.

3.
Cell Prolif ; 55(4): e13152, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34936155

RESUMO

'Requirements for human haematopoietic stem/progenitor cells' is the first set of guidelines on human haematopoietic stem/progenitor cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, inspection methods, inspection rules, instructions for usage, labelling requirements, packaging requirements, storage requirements and transportation requirements for human haematopoietic stem/progenitor cells, which is applicable to the quality control for human haematopoietic stem/progenitor cells. We hope that publication of these guidelines will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human haematopoietic stem/progenitor cells for applications.


Assuntos
Células-Tronco Hematopoéticas , China , Humanos
4.
Cell Prolif ; 55(4): e13141, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34936710

RESUMO

Mesenchymal stem cells (MSCs) have attracted great interest for cell therapy and tissue regeneration due to their self-renewal capacity, multipotency and potent immunomodulatory effects on immune cells. However, heterogeneity of MSCs has become a prominent obstacle to limit their translation into practice, as cells from different tissue sources or each individual have great differences in their transcriptomic signatures, differentiation potential and biological functions. Therefore, there is an urgent need for consensus standard for the quality control and technical specifications of MSCs. 'Human Mesenchymal Stem Cells' is the latest set of guidelines on hMSC in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for hMSC, which is applicable to the quality control for hMSC. It was originally released by the China Society for Cell Biology on 9 January 2021. We hope that publication of these guidelines will facilitate institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of hMSC for clinical development and therapeutic applications.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , China , Humanos , Imunomodulação
5.
Cell Prolif ; 55(4): e13153, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34773310

RESUMO

'Human retinal pigment epithelial cells' is the first set of guidelines on human retinal pigment epithelial cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies technical requirements, test methods, inspection rules, instructions for usage, labelling requirements, packaging requirements, storage requirements and transportation requirements and waste disposal requirements for human retinal pigment epithelial cells, which is applicable to quality control during the process of manufacturing and testing of human retinal pigment epithelial cells. It was originally released by the Chinese Society for Cell Biology on 9 January 2021. We hope that publication of these guidelines will promote institutional establishment, acceptance and execution of proper protocols and accelerate the international standardization of human retinal pigment epithelial cells for applications.


Assuntos
Neurônios , Pigmentos da Retina , China , Células Epiteliais , Humanos
6.
Stem Cells Transl Med ; 10 Suppl 2: S31-S40, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34724724

RESUMO

Brain degeneration and damage is difficult to cure due to the limited endogenous repair capability of the central nervous system. Furthermore, drug development for treatment of diseases of the central nervous system remains a major challenge. However, it now appears that using human pluripotent stem cell-derived neural cells to replace degenerating cells provides a promising cell-based medicine for rejuvenation of brain function. Accordingly, a large number of studies have carried out preclinical assessments, which have involved different neural cell types in several neurological diseases. Recent advances in animal models identify the transplantation of neural derivatives from pluripotent stem cells as a promising path toward the clinical application of cell therapies [Stem Cells Transl Med 2019;8:681-693; Drug Discov Today 2019;24:992-999; Nat Med 2019;25:1045-1053]. Some groups are moving toward clinical testing in humans. However, the difficulty in selection of valuable critical quality criteria for cell products and the lack of functional assays that could indicate suitability for clinical effect continue to hinder neural cell-based medicine development [Biologicals 2019;59:68-71]. In this review, we summarize the current status of preclinical studies progress in this area and outline the biological characteristics of neural cells that have been used in new developing clinical studies. We also discuss the requirements for translation of stem cell-derived neural cells in examples of stem cell-based clinical therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Células-Tronco Pluripotentes , Animais , Terapia Baseada em Transplante de Células e Tecidos , Doenças Neurodegenerativas/terapia , Neurônios/fisiologia , Transplante de Células-Tronco
7.
Cell Res ; 30(9): 794-809, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546764

RESUMO

Lung injury and fibrosis represent the most significant outcomes of severe and acute lung disorders, including COVID-19. However, there are still no effective drugs to treat lung injury and fibrosis. In this study, we report the generation of clinical-grade human embryonic stem cells (hESCs)-derived immunity- and matrix-regulatory cells (IMRCs) produced under good manufacturing practice requirements, that can treat lung injury and fibrosis in vivo. We generate IMRCs by sequentially differentiating hESCs with serum-free reagents. IMRCs possess a unique gene expression profile distinct from that of umbilical cord mesenchymal stem cells (UCMSCs), such as higher expression levels of proliferative, immunomodulatory and anti-fibrotic genes. Moreover, intravenous delivery of IMRCs inhibits both pulmonary inflammation and fibrosis in mouse models of lung injury, and significantly improves the survival rate of the recipient mice in a dose-dependent manner, likely through paracrine regulatory mechanisms. IMRCs are superior to both primary UCMSCs and the FDA-approved drug pirfenidone, with an excellent efficacy and safety profile in mice and monkeys. In light of public health crises involving pneumonia, acute lung injury and acute respiratory distress syndrome, our findings suggest that IMRCs are ready for clinical trials on lung disorders.


Assuntos
Células-Tronco Embrionárias Humanas/imunologia , Lesão Pulmonar/terapia , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Animais , Células Cultivadas , Feminino , Fibrose , Haplorrinos , Células-Tronco Embrionárias Humanas/citologia , Humanos , Imunidade , Imunomodulação , Pulmão/imunologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Stem Cell Reports ; 11(1): 171-182, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29910127

RESUMO

Clinical application of stem cell derivatives requires clinical-grade cells and sufficient preclinical proof of safety and efficacy, preferably in primates. We previously successfully established a clinical-grade human parthenogenetic embryonic stem cell (hPESC) line, but the suitability of its subtype-specific progenies for therapy is not clear. Here, we compared the function of clinical-grade hPESC-derived midbrain dopaminergic (DA) neurons in two canonical protocols in a primate Parkinson's disease (PD) model. We found that the grafts did not form tumors and produced variable but apparent behavioral improvement for at least 24 months in most monkeys in both groups. In addition, a slight DA increase in the striatum correlates with significant functional improvement. These results demonstrated that clinical-grade hPESCs can serve as a reliable source of cells for PD treatment. Our proof-of-concept findings provide preclinical data for China's first ESC-based phase I/IIa clinical study of PD (ClinicalTrials.gov number NCT03119636).


Assuntos
Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Células-Tronco Embrionárias/citologia , Locomoção , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Animais , Comportamento Animal , Biomarcadores , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Movimento Celular , Sobrevivência Celular , Transformação Celular Neoplásica , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doença de Parkinson/etiologia , Fenótipo , Primatas , Putamen/metabolismo , Putamen/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA