Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 274, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755598

RESUMO

BACKGROUND: Extracellular ATP-AMP-adenosine metabolism plays a pivotal role in modulating tumor immune responses. Previous studies have shown that the conversion of ATP to AMP is primarily catalysed by Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39), a widely studied ATPase, which is expressed in tumor-associated immune cells. However, the function of ATPases derived from tumor cells themselves remains poorly understood. The purpose of this study was to investigate the role of colon cancer cell-derived ATPases in the development and progression of colon cancer. METHODS: Bioinformatic and tissue microarray analyses were performed to investigate the expression of ATPase family members in colon cancer. An ATP hydrolysis assay, high-performance liquid chromatography (HPLC), and CCK8 and colony formation assays were used to determine the effects of ENTPD2 on the biological functions of colon cancer cells. Flow cytometric and RNA-seq analyses were used to explore the function of CD8+ T cells. Immunoelectron microscopy and western blotting were used to evaluate the expression of ENTPD2 in exosomes. Double-labelling immunofluorescence and western blotting were used to examine the expression of ENTPD2 in serum exosomes and colon cancer tissues. RESULTS: We found that ENTPD2, rather than the well-known ATPase CD39, is highly expressed in cancer cells and is significantly positively associated with poor patient prognosis in patients with colon cancer. The overexpression of ENTPD2 in cancer cells augmented tumor progression in immunocompetent mice by inhibiting the function of CD8+ T cells. Moreover, ENTPD2 is localized primarily within exosomes. On the one hand, exosomal ENTPD2 reduces extracellular ATP levels, thereby inhibiting P2X7R-mediated NFATc1 nuclear transcription; on the other hand, it facilitates the increased conversion of ATP to adenosine, hence promoting adenosine-A2AR pathway activity. In patients with colon cancer, the serum level of exosomal ENTPD2 is positively associated with advanced TNM stage and high tumor invasion depth. Moreover, the level of ENTPD2 in the serum exosomes of colon cancer patients is positively correlated with the ENTPD2 expression level in paired colon cancer tissues, and the ENTPD2 level in both serum exosomes and tissues is significantly negatively correlated with the ENTPD2 expression level in tumor-infiltrating CD8+ T cells. CONCLUSION: Our study suggests that exosomal ENTPD2, originated from colon cancer cells, contributes to the immunosuppressive microenvironment by promoting ATP-adenosine metabolism. These findings highlight the importance of exosome-derived hydrolytic enzymes as independent entities in shaping the tumor immune microenvironment.


Assuntos
Adenosina Trifosfatases , Linfócitos T CD8-Positivos , Neoplasias do Colo , Exossomos , Animais , Feminino , Humanos , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Exossomos/metabolismo , Reprogramação Metabólica , Receptor A2A de Adenosina , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
2.
Exp Cell Res ; 431(1): 113757, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37640260

RESUMO

Colorectal cancer (CRC) is a common malignancy worldwide nowadays and liver metastasis is the primary cause of death in patients with CRC. Although lysosomal integral membrane protein 2 (LIMP2) has been reported to play important roles in gastric cancer and prostate cancer, its role in CRC remains unclear. The aim of this study was to investigate the function of LIMP2 in CRC invasion and migration, along with the potential underlying molecular mechanisms. We found that LIMP2 levels were higher in CRC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that high expression of LIMP2 was associated with worse prognosis in CRC patients. Knockdown of LIMP2 significantly inhibited invasion, migration, and wound healing abilities of CRC cells in vitro, and inhibited CRC liver metastasis in vivo. Additionally, LIMP2 knockdown inhibited autophagy in CRC. Therefore, LIMP2 plays an important role in CRC progression. High expression of LIMP2 was associated with worse prognosis in CRC patients. Knockdown LIMP2 can effectively inhibit CRC cell migration and invasion in vitro and prevent liver metastasis in vivo. These findings suggest that LIMP2 may serve as an independent prognostic factor and potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias da Próstata , Masculino , Humanos , Movimento Celular/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana Lisossomal , Neoplasias Colorretais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA