RESUMO
Background: Introduction: Circular RNAs (circRNAs) have been identified as significant contributors to the development and advancement of cancer. The objective of this study was to examine the expression and clinical implications of circRNA circ_BBS9 in lung adenocarcinoma (LUAD), as well as its potential modes of action. Methods: The expression of Circ_BBS9 was examined in tissues and cell lines of LUAD through the utilization of microarray profiling, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. In this study, we assessed the impact of circ_BBS9 on the proliferation of LUAD cells, as well as its influence on ferroptosis and tumor formation. To analyze these effects, we employed CCK-8 assays and ferroptosis assays. The identification of proteins that interact with Circ_BBS9 was achieved through the utilization of RNA pull-down and mass spectrometry techniques. A putative regulatory network comprising circ_BBS9, miR-7150, and IFIT3 was established using bioinformatics study. The investigation also encompassed the examination of the correlation between the expression of IFIT3 and the invasion of immune cells. Results: Circ_BBS9 was significantly downregulated in LUAD tissues and cell lines. Low circ_BBS9 expression correlated with poor prognosis. Functional experiments showed that circ_BBS9 overexpression inhibited LUAD cell proliferation and promoted ferroptosis in vitro and suppressed tumor growth in vivo. Mechanistically, circ_BBS9 was found to directly interact with IFIT3 and regulate its expression by acting as a sponge for miR-7150. Additionally, IFIT3 expression correlated positively with immune infiltration in LUAD. Conclusion: Circ_BBS9 has been identified as a tumor suppressor in lung adenocarcinoma (LUAD) and holds promise as a diagnostic biomarker. The potential mechanism of action involves the modulation of ferroptosis and the immunological microenvironment through direct interaction with IFIT3 and competitive binding to miR-7150. The aforementioned findings offer new perspectives on the pathophysiology of LUAD and highlight circ_BBS9 as a potentially valuable target for therapeutic interventions.
Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , RNA Circular , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , RNA Circular/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/diagnóstico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Biomarcadores Tumorais/genética , Animais , Camundongos , Ferroptose/genética , Ferroptose/imunologia , Linhagem Celular Tumoral , MicroRNAs/genética , Masculino , Proliferação de Células , Feminino , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Pessoa de Meia-Idade , Camundongos Nus , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
OBJECTIVE: To explore the association between the concentration of maternal serum biomarkers and the risk of fetal carrying chromosome copy number variants (CNVs). METHODS: Pregnant women identified as high risk in the second-trimester serological triple screening and underwent traditional amniotic fluid karyotype analysis, along with comparative genomic hybridization array (aCGH)/copy number variation sequencing (CNV-seq), were included in the study. We divided the concentration of serum biomarkers, free beta-human chorionic gonadotropin (fß-hCG), alpha fetoprotein (AFP) and unconjugated estriol (uE3), into three levels: abnormally low, normal and abnormally high. The prevalence of abnormally low, normal and abnormally high serum fß-hCG, AFP and uE3 levels in pregnant women with aberrant aCGH/CNV-seq results and normal controls was calculated. RESULTS: Among the 2877 cases with high risk in the second-trimester serological triple screening, there were 98 chromosome abnormalities revealed by karyotype analysis, while 209 abnormalities were detected by aCGH/CNVseq (Pï¼0.001) . The carrying rate of aberrant CNVs increased significantly when the maternal serum uE3 level was less than 0.4 multiple of median (MoM) of corresponding gestational weeks compared to normal controls, while the carrying rate of aberrant CNVs decreased significantly when the maternal serum fß-hCG level was greater than 2.5 MoM compared to normal controls. No significant difference was found in the AFP group. CONCLUSION: Low serum uE3 level (<0.4 MoM) was associated with an increased risk of aberrant CNVs.
Assuntos
Biomarcadores , Gonadotropina Coriônica Humana Subunidade beta , Variações do Número de Cópias de DNA , alfa-Fetoproteínas , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Adulto , Biomarcadores/sangue , Gonadotropina Coriônica Humana Subunidade beta/sangue , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo , Segundo Trimestre da Gravidez/sangue , Estriol/sangue , Hibridização Genômica Comparativa , Aberrações Cromossômicas , Cariotipagem , Diagnóstico Pré-Natal/métodos , Testes para Triagem do Soro MaternoRESUMO
DNA methylation, an epigenetic mechanism that alters gene expression without changing DNA sequence, is essential for organism development and key biological processes like genomic imprinting and X-chromosome inactivation. Despite tremendous efforts in DNA methylation research, accurate quantification of cytosine methylation remains a challenge. Here, a single-base methylation quantification approach is introduced by weighting methylation of consecutive CpG sites (Wemics) in genomic regions. Wemics quantification of DNA methylation better predicts its regulatory impact on gene transcription and identifies differentially methylated regions (DMRs) with more biological relevance. Most Wemics-quantified DMRs in lung cancer are epigenetically conserved and recurrently occurred in other primary cancers from The Cancer Genome Atlas (TCGA), and their aberrant alterations can serve as promising pan-cancer diagnostic markers. It is further revealed that these detected DMRs are enriched in transcription factor (TF) binding motifs, and methylation of these TF binding motifs and TF expression synergistically regulate target gene expression. Using Wemics on epigenomic-transcriptomic data from the large lung cancer cohort, a dozen novel genes with oncogenic potential are discovered that are upregulated by hypomethylation but overlooked by other quantification methods. These findings increase the understanding of the epigenetic mechanism by which DNA methylation regulates gene expression.
Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias Pulmonares , Metilação de DNA/genética , Epigênese Genética/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ilhas de CpG/genéticaRESUMO
Supersaturation of total dissolved gas (TDG) caused by high dam discharge is an ecological risk that cannot be ignored in the operation of hydropower stations. The establishment of an efficient and concise TDG generation prediction model is of great significance to the water ecology and water environment protection of hydropower development reaches. The flow conditions and the process of water-gas mass transfer in discharge and energy dissipation are very complicated and difficult to observe in the field, bringing difficulties to the establishment of prediction model and parameter calibration. Increasingly abundant observations make it possible to establish an efficient machine learning prediction model for supersaturated TDG. In this study, extreme learning machine (ELM) and support vector regression (SVR) were used to establish the prediction model. The main influencing factors of supersaturated TDG, obtained by the analysis of the physical process of the generation of supersaturated TDG, were used as the input of the machine learning model. Then, this research took Dagangshan hydropower station and Xiluodu hydropower station as objects, and established machine learning prediction model for supersaturated TDG with several years of observation data in different discharge scenarios. Four models, including ELM, SVR, GA-ELM and GA-SVR, were obtained through genetic algorithm optimization. The relative errors of the simulation results of each model are mostly less than 5%, mean absolute error (MAE) values less than 1.6%, and root mean square error (RMSE) values less than 2.5%. The results showed that these models are highly accurate and time-saving. Based on this, TDG saturation in downstream of Dagangshan hydropower station with different discharge scenarios was simulated by machine learning model, on which the discharge optimization scheme was put forward. The proposed models, as an important supplement to the prediction of supersaturated TDG, enjoy practical significance and engineering value.
Assuntos
Gases , Movimentos da Água , Aprendizado de Máquina , ÁguaRESUMO
Pathological heterogeneity is common in clinical tissue specimens and complicates the interpretation of molecular data obtained from the specimen. As a typical example, a kidney biopsy specimen often contains glomeruli and tubulointerstitial regions with different levels of histological injury, including some that are histologically normal. We reasoned that the molecular profiles of kidney tissue regions with specific histological injury scores could provide new insights into kidney injury progression. Therefore, we developed a strategy to perform small RNA deep sequencing analysis for individually scored glomerular and tubulointerstitial regions in formalin-fixed, paraffin-embedded kidney needle biopsies. This approach was applied to study focal segmental glomerulosclerosis (FSGS), the leading cause of nephrotic syndrome in adults. Large numbers of small RNAs, including microRNAs, 3'-tRFs, 5'-tRFs, and mitochondrial tRFs, were differentially expressed between histologically indistinguishable tissue regions from patients with FSGS and matched healthy controls. A majority of tRFs were upregulated in FSGS. Several small RNAs were differentially expressed between tissue regions with different histological scores in FSGS. Notably, with increasing levels of histological damage, miR-21-5p was upregulated progressively and miR-192-5p was downregulated progressively in glomerular and tubulointerstitial regions, respectively. This study marks the first genome scale molecular profiling conducted in histologically characterized glomerular and tubulointerstitial regions. Thus, substantial molecular changes in histologically normal kidney regions in FSGS might contribute to initiating tissue injury or represent compensatory mechanisms. In addition, several small RNAs might contribute to subsequent progression of glomerular and tubulointerstitial injury, and histologically mapping small RNA profiles may be applied to analyze tissue specimens in any disease.
Assuntos
Glomerulosclerose Segmentar e Focal , MicroRNAs , Síndrome Nefrótica , Adulto , Feminino , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Rim/patologia , Glomérulos Renais/patologia , Masculino , MicroRNAs/genética , Síndrome Nefrótica/patologiaRESUMO
OBJECTIVE: To carry out genetic testing for a Chinese patient with X-linked hypohidrotic ectodermal dysplasia (XLHED) and explore its genotype-phenotype correlation. METHODS: Clinical data of the patient was collected. Peripheral blood samples were taken from the patient, his parents and 100 unrelated healthy controls. Genetic variants were detected by using next-generation sequencing using a skin-disease panel through targeted capture and next generation sequencing. Candidate variant was verified by Sanger sequencing. All literature related to genetic testing of XLHED patients in China was searched in the database, and the genotypes and phenotypes of patients in the literature and the correlation between them were statistically analyzed. RESULTS: A novel splice site variant c.655_689del was detected in the patient but not among his parents and the 100 unrelated healthy controls. So far 61 variants of the EDA gene have been identified among Chinese patients with XLHED, which suggested certain degree of genotype-phenotype correlation. CONCLUSION: A novel c.655_689del variant has been identified in the EDA gene, which has expanded the spectrum of EDA gene variant and facilitated delineation of the genotype-phenotype correlation of XLHED.
Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Criança , China , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/genética , Testes Genéticos , Genótipo , Humanos , FenótipoRESUMO
PURPOSE OF REVIEW: Cardiovascular toxicity is a leading cause of mortality among cancer survivors and has become increasingly prevalent due to improved cancer survival rates. In this review, we synthesize evidence illustrating how common cancer therapeutic agents, such as anthracyclines, human epidermal growth factors receptors (HER2) monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been evaluated in cardiomyocytes (CMs) derived from human-induced pluripotent stem cells (hiPSCs) to understand the underlying mechanisms of cardiovascular toxicity. We place this in the context of precision cardio-oncology, an emerging concept for personalizing the prevention and management of cardiovascular toxicities from cancer therapies, accounting for each individual patient's unique factors. We outline steps that will need to be addressed by multidisciplinary teams of cardiologists and oncologists in partnership with regulators to implement future applications of hiPSCs in precision cardio-oncology. RECENT FINDINGS: Current prevention of cardiovascular toxicity involves routine screenings and management of modifiable risk factors for cancer patients, as well as the initiation of cardioprotective medications. Despite recent advancements in precision cardio-oncology, knowledge gaps remain and limit our ability to appropriately predict with precision which patients will develop cardiovascular toxicity. Investigations using patient-specific CMs facilitate pharmacological discovery, mechanistic toxicity studies, and the identification of cardioprotective pathways. Studies with hiPSCs demonstrate that patients with comorbidities have more frequent adverse responses, compared to their counterparts without cardiac disease. Further studies utilizing hiPSC modeling should be considered, to evaluate the impact and mitigation of known cardiovascular risk factors, including blood pressure, body mass index (BMI), smoking status, diabetes, and physical activity in their role in cardiovascular toxicity after cancer therapy. Future real-world applications will depend on understanding the current use of hiPSC modeling in order for oncologists and cardiologists together to inform their potential to improve our clinical collaborative practice in cardio-oncology. When applying such in vitro characterization, it is hypothesized that a safety score can be assigned to each individual to determine who has a greater probability of developing cardiovascular toxicity. Using hiPSCs to create personalized models and ultimately evaluate the cardiovascular toxicity of individuals' treatments may one day lead to more patient-specific treatment plans in precision cardio-oncology while reducing cardiovascular disease (CVD) morbidity and mortality.
Assuntos
Doenças Cardiovasculares/etiologia , Células-Tronco Pluripotentes Induzidas/citologia , Neoplasias/complicações , Medicina de Precisão , Antraciclinas/toxicidade , Cardiotoxicidade , Doenças Cardiovasculares/prevenção & controle , Diferenciação Celular , Reprogramação Celular , Humanos , Receptor ErbB-2/antagonistas & inibidores , Fatores de RiscoRESUMO
Background: Aberrant DNA methylation occurs commonly during carcinogenesis and is of clinical value in human cancers. However, knowledge of the impact of DNA methylation changes on lung carcinogenesis and progression remains limited. Methods: Genome-wide DNA methylation profiles were surveyed in 18 pairs of tumors and adjacent normal tissues from non-small cell lung cancer (NSCLC) patients using Reduced Representation Bisulfite Sequencing (RRBS). An integrated epigenomic-transcriptomic landscape of lung cancer was depicted using the multi-omics data integration method. Results: We discovered a large number of hypermethylation events pre-marked by poised promoter in embryonic stem cells, being a hallmark of lung cancer. These hypermethylation events showed a high conservation across cancer types. Eight novel driver genes with aberrant methylation (e.g., PCDH17 and IRX1) were identified by integrated analysis of DNA methylome and transcriptome data. Methylation level of the eight genes measured by pyrosequencing can distinguish NSCLC patients from lung tissues with high sensitivity and specificity in an independent cohort. Their tumor-suppressive roles were further experimentally validated in lung cancer cells, which depend on promoter hypermethylation. Similarly, 13 methylation-driven ncRNAs (including 8 lncRNAs and 5 miRNAs) were identified, some of which were co-regulated with their host genes by the same promoter hypermethylation. Finally, by analyzing the transcription factor (TF) binding motifs, we uncovered sets of TFs driving the expression of epigenetically regulated genes and highlighted the epigenetic regulation of gene expression of TCF21 through DNA methylation of EGR1 binding motifs. Conclusions: We discovered several novel methylation driver genes of diagnostic and therapeutic relevance in lung cancer. Our findings revealed that DNA methylation in TF binding motifs regulates target gene expression by affecting the binding ability of TFs. Our study also provides a valuable epigenetic resource for identifying DNA methylation-based diagnostic biomarkers, developing cancer drugs for epigenetic therapy and studying cancer pathogenesis.
Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Neoplasias Pulmonares/genética , Transcriptoma/genética , Células A549 , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Epigenômica/métodos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Fatores de Transcrição/genéticaRESUMO
DNA methylation plays a vital role in transcription regulation. Reduced representation bisulfite sequencing (RRBS) is becoming common for analyzing genome-wide methylation profiles at the single nucleotide level. A major goal of RRBS studies is to detect differentially methylated regions (DMRs) between different biological conditions. The previous tools to predict DMRs lack consistency. Here, we simulated RRBS datasets with significant attributes of real sequencing data under a wide range of scenarios, and systematically evaluated seven DMR detection tools in terms of type I error rate, precision/recall (PR), and area under ROC curve (AUC) using different methylation levels, sequencing coverage depth, length of DMRs, read length, and sample sizes. DMRfinder, methylSig, and methylKit were our preferred tools for RRBS data analysis, in terms of their AUC and PR curves. Our comparison highlights the different applicability of DMR detection tools and provides information to guide researchers towards the advancement of sequence-based DMR analysis.
Assuntos
Metilação de DNA , Análise de Sequência de DNA , Software , Humanos , Neoplasias/genética , SulfitosRESUMO
OBJECTIVE: The purpose of this study was to determine the effects of surgical resection of muscle layer on the long-term survival of patients with hypertrophic obstructive cardiomyopathy (HOCM). METHODS: The original study cohort consisted of 552 patients with hypertrophic cardiomyopathy (HCM), including 380 patients with HOCM and 172 patients with nonobstructive HCM. All these patients had a definite diagnosis in our center from October 1, 2009, to December 31, 2012. They were divided into three groups, viz., HOCM with myectomy group (n=194), nonoperated HOCM group (n=186), and nonobstructive HCM group (n=172). Median follow-up duration was 57.57±13.71 months, and the primary end point was a combination of mortality from all causes. RESULTS: In this survival study, we compared the prognoses of patients with HOCM after myectomy, patients with nonoperated HOCM, and patients with nonobstructive HCM. Among the three groups, the myectomy group showed a lower rate of reaching the all-cause mortality with statistically indistinguishable overall survival compared with patients with nonobstructive HCM (p=0.514). Among patients with left ventricular outflow tract (LVOT) obstruction, the overall survival in the myectomy group was noticeably better than that in the nonoperated HOCM group (log-rank p<0.001). Parameters that showed a significant univariate correlation with survival included age, previous atrial fibrillation (AF), NT-proBNP, Cr, myectomy, and LV ejection fraction. When these variables were entered in the multivariate model, the only independent predictors of survival were myotomy [hazard ratio (HR): 0.109; 95% CI: 0.013-0.877, p<0.037], age (HR: 1.047; 95% CI: 1.007-1.088, p=0.021), and previous AF (HR: 2.659; 95% CI: 1.022-6.919, p=0.021). CONCLUSION: Patients with HOCM undergoing myectomy appeared to suffer from a lower risk of reaching the all-cause mortality and demonstrated statistically indistinguishable overall survival compared with patients with nonobstructive HCM. Multivariate analysis clearly demonstrated myectomy as a powerful, independent factor of survival, confirming that the differences in long-term survival recorded in this study may be due to surgical improvement in the LVOT gradient.
Assuntos
Cardiomiopatia Hipertrófica/cirurgia , Septos Cardíacos/cirurgia , Cardiomiopatia Hipertrófica/mortalidade , Cardiomiopatia Hipertrófica/fisiopatologia , China , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Miomectomia UterinaRESUMO
Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs whose biological roles in cancers are not well understood. Emerging evidence suggests that tRFs are involved in gene regulation at multiple levels. In this study, we constructed an integrative database, OncotRF (http://bioinformatics.zju.edu.cn/OncotRF), for in silico exploration of tRF functions, and identification of diagnostic and prognostic biomarkers in cancers. The database contains an analysis pipeline for tRF identification and characterization, analysis results of 11,211 small RNA sequencing samples and 8,776 RNA sequencing samples, and clinicopathologic annotation data from The Cancer Genome Atlas (TCGA). The results include: tRF identification and quantification across 33 cancers, abnormally expressed tRFs and genes, tRF-gene correlations, tRF-gene networks, survival analyses, and tRF-related functional enrichment analyses. Users are also able to identify differentially expressed tRFs, predict their functions, and assess the relevance of the tRF expression levels to the clinical outcome according to user-defined groups. Additionally, an online Kaplan-Meier plotter is available in OncotRF for plotting survival curves according to user-defined groups. OncotRF will be a valuable online database and functional annotation tool for researchers studying the roles, functions, and mechanisms of tRFs in human cancers.
Assuntos
Biologia Computacional/métodos , Neoplasias/genética , RNA de Transferência/genética , RNA não Traduzido/genética , Software , Biomarcadores , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , NavegadorRESUMO
Mounting evidence has indicated that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) played important roles in renal ischemia/reperfusion (I/R) injury. However, the involvement of lncRNA growth arrest specific 5 (GAS5) in acute kidney injury (AKI) remained largely unexplored. This study aimed to determine possible mechanisms of GAS5 in the renal I/R process. We found that GAS5, noticeably upregulated by renal I/R injury, was further suppressed by delayed IPC while knockdown of miR-21 in vivo before IPC could significantly increased the GAS5 levels. Concurrently, TSP-1 was negatively regulated by miR-21 in vivo and vitro. Additionally, Reciprocal repression of GAS5 and miR-21 was identified. Knockdown of miR-21 in H6R0.5 treated HK-2 cells promoted apoptosis. Co-transfection of miR-21 mimic and pcDNA-GAS5 or pcDNA-Vector were performed, results of which showed that inhibition of miR-21 on TSP-1 could be rescued by overexpression of GAS5. This study suggested that GAS5 facilitated apoptosis by competitively sponging miR-21, which negatively regulated TSP-1 in renal I/R injury. This novel regulatory axis could act as a therapeutic target for AKI in the future.
RESUMO
Transfer RNA-derived RNA fragments (tRFs) are a class of small non-coding RNAs that are abundant in many organisms, but their role in cancer has not been fully explored. Here, we report a functional genomic landscape of tRFs in 8118 specimens across 15 cancer types from The Cancer Genome Atlas. These tRFs exhibited characteristics of widespread expression, high sequence conservation, cytoplasmic localization, specific patterns of tRNA cleavage and conserved cleavage in tissues. A cross-tumor analysis revealed significant commonality among tRF expression subtypes from distinct tissues of origins, characterized by upregulation of a group of tRFs with similar size and activation of cancer-associated signaling. One of the largest superclusters was composed of 22 nt 3'-tRFs upregulated in 13 cancer types, all of which share the activation of Ras/MAPK, RTK and TSC/mTOR signaling. tRF-based subgrouping provided clinically relevant stratifications and significantly improved outcome prediction by incorporating clinical variables. Additionally, we discovered 11 cancer driver tRFs using an effective approach for accurately exploring cross-tumor and platform trends. As a proof of concept, we performed comprehensive functional assays on a non-microRNA driver tRF, 5'-IleAAT-8-1-L20, and validated its oncogenic roles in lung cancer in vitro and in vivo. Our study also provides a valuable tRF resource for identifying diagnostic and prognostic biomarkers, developing cancer therapy and studying cancer pathogenesis.
RESUMO
Genomic amplification of 3q26.2 locus leads to the increased expression of microRNA 551b-3p (miR551b-3p) in triple-negative breast cancer (TNBC). Our results demonstrate that miR551b-3p translocates to the nucleus with the aid of importin-8 (IPO8) and activates STAT3 transcription. As a consequence, miR551b upregulates the expression of oncostatin M receptor (OSMR) and interleukin-31 receptor-α (IL-31RA) as well as their ligands OSM and IL-31 through STAT3 transcription. We defined this set of genes induced by miR551b-3p as the "oncostatin signaling module," which provides oncogenic addictions in cancer cells. Notably, OSM is highly expressed in TNBC, and the elevated expression of OSM associates with poor outcome in estrogen-receptor-negative breast cancer patients. Conversely, targeting miR551b with anti-miR551b-3p reduced the expression of the OSM signaling module and reduced tumor growth, as well as migration and invasion of breast cancer cells.
Assuntos
Progressão da Doença , MicroRNAs/metabolismo , Oncostatina M/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Camundongos Nus , MicroRNAs/genética , Terapia de Alvo Molecular , Invasividade Neoplásica , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica , Ativação Transcricional/genética , Regulação para Cima/genética , beta Carioferinas/metabolismoRESUMO
BACKGROUND: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. RESULTS: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. CONCLUSIONS: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.
Assuntos
Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Proteínas Proto-Oncogênicas/genética , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Dioxigenases , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos KnockoutRESUMO
Human blood pressure salt sensitivity is associated with changes in urinary metabolites related to fumarase (Fh) and nitric oxide (NO) metabolism, and fumarase promotes NO production through an arginine regeneration pathway. We examined the role of the fumarase-NO pathway in the development of hypertension using genetically engineered rat models. Dahl salt-sensitive (SS) rats with heterozygous mutation of eNOS (endothelial NO synthase or Nos3; SS-Nos3+/-) were bred with SS rats with a hemizygous Fh transgene. SS-Nos3+/- rats without the Fh transgene (SS-Nos3+/-/Fh0/0) developed substantial hypertension with a mean arterial pressure of 134.2±3.7 mm Hg on a 0.4% NaCl diet and 178.0±3.5 mm Hg after 14 days on a 4% NaCl diet. Mean arterial pressure decreased remarkably to 123.1±1.4 mm Hg on 0.4% NaCl, and 143.3±1.5 mm Hg on 4% NaCl in SS-Nos3+/- rats with a Fh transgene (SS-Nos3+/-/Fh0/1), and proteinuria, renal fibrosis, and tubular casts were attenuated in SS-Nos3+/-/Fh0/1 rats compared with SS-Nos3+/-/Fh0/0 rats. eNOS protein abundance decreased in rats with the Nos3 heterozygous mutation, which was not influenced by Fh overexpression in rats on the 0.4% NaCl diet. However, the decrease in NO metabolite in the renal outer medulla of SS-Nos3+/-/Fh0/0 rats on the 0.4% NaCl diet was reversed in SS-Nos3+/-/Fh0/1 rats, and levels of L-arginine, but not the other 12 amino acids analyzed, were significantly higher in SS-Nos3+/-/Fh0/1 rats than in SS-Nos3+/+/Fh0/0 rats. In conclusion, fumarase has potent effects in restoring NO production and blunting the development of hypertension attributable to eNOS haploinsufficiency.
Assuntos
Progressão da Doença , Fumarato Hidratase/genética , Haploinsuficiência/genética , Hipertensão/genética , Óxido Nítrico Sintase Tipo III/genética , Análise de Variância , Animais , Arginina/metabolismo , Biópsia por Agulha , Western Blotting/métodos , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipertensão/fisiopatologia , Imuno-Histoquímica , Masculino , Mutação/genética , Distribuição Aleatória , Ratos , Ratos Endogâmicos Dahl , Ratos Transgênicos , Urinálise/métodosRESUMO
MicroRNA miR-192-5p is one of the most abundant microRNAs in the kidney and targets the mRNA for ATP1B1 (ß1 subunit of Na+/K+-ATPase). Na+/K+-ATPase drives renal tubular reabsorption. We hypothesized that miR-192-5p in the kidney would protect against the development of hypertension. We found miR-192-5p levels were significantly lower in kidney biopsy specimens from patients with hypertension (n=8) or hypertensive nephrosclerosis (n=32) compared with levels in controls (n=10). Similarly, Dahl salt-sensitive (SS) rats showed a reduced abundance of miR-192-5p in the renal cortex compared with congenic SS.13BN26 rats that had reduced salt sensitivity (n=9; P<0.05). Treatment with anti-miR-192-5p delivered through renal artery injection in uninephrectomized SS.13BN26 rats exacerbated hypertension significantly. Mean arterial pressure on a 4% NaCl high-salt diet at day 14 post anti-miR-192-5p treatment was 16 mm Hg higher than in rats treated with scrambled anti-miR (n=8 and 6; P<0.05). Similarly, Mir192 knockout mice on the high-salt diet treated with Ang II (angiotensin II) for 14 days exhibited a mean arterial pressure 22 mm Hg higher than wild-type mice (n=9 and 5; P<0.05). Furthermore, protein levels of ATP1B1 were higher in Dahl SS rats than in SS.13BN26 rats. Na+/K+-ATPase activity increased in the renal cortex of SS.13BN26 rats 9 days posttreatment with anti-miR-192-5p compared with that of control anti-miR treated rats. Intrarenal knockdown of ATP1B1 attenuated hypertension in SS.13BN26 rats with intrarenal knockdown of miR-192-5p. In conclusion, miR-192-5p in the kidney protects against the development of hypertension, which is mediated, at least in part, by targeting Atp1b1.
Assuntos
Hipertensão/prevenção & controle , Rim/fisiologia , MicroRNAs/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Angiotensina II/farmacologia , Animais , Pressão Sanguínea , Humanos , Masculino , Ratos , Ratos Endogâmicos Dahl , ATPase Trocadora de Sódio-Potássio/análise , ATPase Trocadora de Sódio-Potássio/genéticaRESUMO
Long noncoding RNAs (lncRNAs) are endogenous RNA transcripts longer than 200 nucleotides which regulate epigenetically the expression of genes but do not have protein-coding potential. They are emerging as potential key regulators of diabetes mellitus and a variety of cardiovascular diseases. Diabetic cardiomyopathy (DCM) refers to diabetes mellitus-elicited structural and functional abnormalities of the myocardium, beyond that caused by ischemia or hypertension. The purpose of this review was to summarize current status of lncRNA research for DCM and discuss the challenges and possible strategies of lncRNA research for DCM. A systemic search was performed using PubMed and Google Scholar databases. Major conference proceedings of diabetes mellitus and cardiovascular disease occurring between January, 2014 to August, 2018 were also searched to identify unpublished studies that may be potentially eligible. The pathogenesis of DCM involves elevated oxidative stress, myocardial inflammation, apoptosis, and autophagy due to metabolic disturbances. Thousands of lncRNAs are aberrantly regulated in DCM. Manipulating the expression of specific lncRNAs, such as H19, metastasis-associated lung adenocarcinoma transcript 1, and myocardial infarction-associated transcript, with genetic approaches regulates potently oxidative stress, myocardial inflammation, apoptosis, and autophagy and ameliorates DCM in experimental animals. The detail data regarding the regulation and function of individual lncRNAs in DCM are limited. However, lncRNAs have been considered as potential diagnostic and therapeutic targets for DCM. Overexpression of protective lncRNAs and knockdown of detrimental lncRNAs in the heart are crucial for defining the role and function of lncRNAs of interest in DCM, however, they are technically challenging due to the length, short life, and location of lncRNAs. Gene delivery vectors can provide exogenous sources of cardioprotective lncRNAs to ameliorate DCM, and CRISPR-Cas9 genome editing technology may be used to knockdown specific lncRNAs in DCM. In summary, current data indicate that LncRNAs are a vital regulator of DCM and act as the promising diagnostic and therapeutic targets for DCM.
Assuntos
Cardiomiopatias Diabéticas/genética , Miocárdio/metabolismo , RNA Longo não Codificante/genética , Animais , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/terapia , Regulação da Expressão Gênica , Terapia Genética/métodos , Humanos , Miocárdio/patologia , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêuticoRESUMO
BACKGROUND: In spite of extensive study, the mechanisms for salt sensitivity of BP in humans and rodent models remain poorly understood. Several microRNAs (miRNAs) have been associated with hypertension, but few have been shown to contribute to its development. METHODS: We examined miRNA expression profiles in human kidney biopsy samples and rat models using small RNA deep sequencing. To inhibit an miRNA specifically in the kidney in conscious, freely moving rats, we placed indwelling catheters to allow both renal interstitial administration of a specific anti-miR and measurement of BP. A rat with heterozygous disruption of the gene encoding endothelial nitric oxide synthase (eNOS) was developed. We used bioinformatic analysis to evaluate the relationship between 283 BP-associated human single-nucleotide polymorphisms (SNPs) and 1870 human miRNA precursors, as well as other molecular and cellular methods. RESULTS: Compared with salt-insensitive SS.13BN26 rats, Dahl salt-sensitive (SS) rats showed an upregulation of miR-214-3p, encoded by a gene in the SS.13BN26 congenic region. Kidney-specific inhibition of miR-214-3p significantly attenuated salt-induced hypertension and albuminuria in SS rats. miR-214-3p directly targeted eNOS. The effect of miR-214-3p inhibition on hypertension and albuminuria was abrogated in SS rats with heterozygous loss of eNOS. Human kidney biopsy specimens from patients with hypertension or hypertensive nephrosclerosis showed upregulation of miR-214-3p; the gene encoding miR-214-3p was one of several differentially expressed miRNA genes located in proximity to human BP-associated SNPs. CONCLUSIONS: Renal miR-214-3p plays a functional and potentially genetic role in the development of hypertension, which might be mediated in part by targeting eNOS.
Assuntos
Hipertensão/etiologia , Rim/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto , Animais , Pressão Sanguínea/genética , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Masculino , MicroRNAs/antagonistas & inibidores , Pessoa de Meia-Idade , Nefroesclerose/genética , Nefroesclerose/metabolismo , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Endogâmicos Dahl , Ratos Transgênicos , Transcriptoma , Regulação para CimaRESUMO
Dietary salt intake has significant effects on arterial blood pressure and the development of hypertension. Mechanisms underlying salt-dependent changes in blood pressure remain poorly understood, and it is difficult to assess blood pressure salt-sensitivity clinically. Methods: We examined urinary levels of metabolites in 103 participants of the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial after nearly 30 days on a defined diet containing high sodium (targeting 150 mmol sodium intake per day) or low sodium (50 mmol per day). Targeted chromatography/mass spectrometry analysis was performed in 24 h urine samples for 47 amino metabolites and 10 metabolites related to the tricarboxylic acid cycle. The effect of an identified metabolite on blood pressure was examined in Dahl salt-sensitive rats. Results: Urinary metabolite levels improved the prediction of classification of blood pressure salt-sensitivity based on race, age and sex. Random forest and generalized linear mixed model analyses identified significant (false discovery rate <0.05) associations of 24 h excretions of ß-aminoisobutyric acid, cystine, citrulline, homocysteine and lysine with systolic blood pressure and cystine with diastolic blood pressure. The differences in homocysteine levels between low- and high-sodium intakes were significantly associated with the differences in diastolic blood pressure. These associations were significant with or without considering demographic factors. Treatment with ß-aminoisobutyric acid significantly attenuated high-salt-induced hypertension in Dahl salt-sensitive rats. Conclusion: These findings support the presence of new mechanisms of blood pressure regulation involving metabolic intermediaries, which could be developed as markers or therapeutic targets for salt-sensitive hypertension.