Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39259226

RESUMO

PURPOSE: Multiple myeloma (MM) is characterized by the uncontrolled proliferation of monoclonal plasma cells (PC) in the bone marrow (BM). B-cell maturation antigen (BCMA) is predominantly expressed in malignant plasma cells, and associated with the proliferation, survival, and progression of various myeloma cells. Given these important roles, BCMA emerges as an ideal target antigen for MM therapy. However, effective stratification of patients who may benefit from targeted BCMA therapy and real-time monitoring the therapeutic efficacy poses significant clinical challenge. This study aims to develop a BCMA targeted diagnostic modality, and preliminarily explore its potential value in the radio-immunotherapy of MM. EXPERIMENTAL DESIGN: Using zirconium-89 (89Zr, t1/2 = 78.4 h) for labeling the BCMA-specific antibody, the BCMA-targeting PET tracer [89Zr]Zr-DFO-BCMAh230430 was prepared. The EC50 values of BCMAh230430 and DFO-BCMAh230430 were determined by ELISA assay. BCMA expression was assessed in four different tumor cell lines (MM.1S, RPMI 8226, BxPC-3, and KYSE520) through Western blot and flow cytometry. In vitro binding affinity was determined by cell uptake studies of [89Zr]Zr-DFO-BCMAh230430 in these tumor cell lines. For in vivo evaluation, PET imaging and ex vivo biodistribution studies were conducted in tumor-bearing mice to evaluate imaging performance and systemic distribution of [89Zr]Zr-DFO-BCMAh230430. Immunochemistry analysis was performed to detect BCMA expression in tumor tissues, confirming the specificity of our probe. Furthermore, we explored the anti-tumor efficacy of Lutetium-177 labeled BCMA antibody, [177Lu]Lu-DTPA-BCMAh230430, in tumor bearing-mice to validate its radioimmunotherapy potential. RESULTS: The radiolabeling of [89Zr]Zr-DFO-BCMAh230430 and [177Lu]Lu-DTPA-BCMAh230430 showed satisfactory radiocharacteristics, with a radiochemical purity exceeding 99%. ELISA assay results revealed closely aligned EC50 values for BCMAh230430 and DFO-BCMAh230430, which are 57 pM and 67 pM, respectively. Western blot and flow cytometry analyses confirmed the highest BCMA expression level. Cell uptake data indicated that MM.1S cells had a total cellular uptake (the sum of internalization and surface binding) of 38.3% ± 1.53% for [89Zr]Zr-DFO-BCMAh230430 at 12 h. PET imaging of [89Zr]Zr-DFO-BCMAh230430 displayed radioactive uptake of 7.71 ± 0.67%ID/g in MM.1S tumors and 4.13 ± 1.21%ID/g in KYSE520 tumors at 168 h post-injection (n = 4) (P < 0.05), consistent with ex vivo biodistribution studies. Immunohistochemical analysis of tumor tissues confirmed higher BCMA expression in MM.1S tumors xenograft compared to KYSE520 tumors. Notably, [177Lu]Lu-DTPA-BCMAh230430 showed some anti-tumor efficacy, evidenced by slowed tumor growth. Furthermore, no significant difference in body weight was observed in MM.1S tumor-bearing mice over 14 days of administration with or without [177Lu]Lu-DTPA-BCMAh230430. CONCLUSIONS: Our study has successfully validated the essential role of [89Zr]Zr-DFO-BCMAh230430 in non-invasively monitoring BCMA status in MM tumors, showing favorable tumor uptake and specific binding affinity to MM tumors. Furthermore, our research revealed, as a proof-of-concept, the effectiveness of [177Lu]Lu-DTPA-BCMAh230430 in radioimmunotherapy for MM tumors. In conclusion, we present a novel BCMA antibody-based radiotheranostic modality that holds promise for achieving efficient and precise MM diagnostic and therapy.

2.
Angew Chem Int Ed Engl ; 63(40): e202409896, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980957

RESUMO

Numerous methods have been reported for detecting ROS/RNS in vitro and in vivo; however, detecting methods for the secondary products of the reactive oxygen species (ROS)/reactive nitrogen species (RNS) reactions, particularly quasi-stable oxidized products, have been much less explored. In this report, we observed that half-curcumins could generate chemiluminescence (CL). In contrast to other chemiluminescence scaffolds, the distinguishing feature of a half-curcumin is the formation of a carbanion intermediate of its acetylacetone moiety, opening unique avenues for applications. In this study, we designed a series of half-curcumins CRANAD-Xs and found that CRANAD-164 could be used to detect quasi-stable oxidized proteins (QSOP) in vivo and in patient serum samples. We illustrated that CRANAD-164 could be used to monitor the responses of taurine, an amino acid with newly reported anti-aging capacity, in an inflammatory mouse model. Remarkably, we further demonstrated that the QSOP levels were much higher in the disease serum samples, including Alzheimer's disease (AD), compared to the samples from healthy controls. Moreover, our results revealed that the sera chemiluminescence intensities were higher in aged healthy controls compared to young healthy subjects, suggesting that CRANAD-164 can be used to monitor the increase of QSOP during aging.


Assuntos
Curcumina , Medições Luminescentes , Oxirredução , Humanos , Curcumina/química , Animais , Medições Luminescentes/métodos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Luminescência , Substâncias Luminescentes/química , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular
3.
Am J Nucl Med Mol Imaging ; 14(1): 41-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500745

RESUMO

Poly(ADP-ribose) polymerase (PARP) activation often indicates a disruptive signal to lipid metabolism, the physiological alteration of which may be implicated in the development of non-alcoholic fatty liver disease. The objective of this study was to evaluate the capability of [68Ga]DOTA-PARPi PET to detect hepatic PARP expression in a non-alcoholic steatohepatitis (NASH) mouse model. In this study, male C57BL/6 mice were subjected to a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for a 12-week period to establish preclinical NASH models. [68Ga]DOTA-PARPi PET imaging of the liver was conducted at the 12-week mark after CDAHFD feeding. Comprehensive histopathological analysis, covering hepatic steatosis, inflammation, fibrosis, along with blood biochemistry, was performed in both NASH models and control groups. Despite the induction of severe inflammation, steatosis and fibrosis in the liver of mice with the CDAHFD-NASH model, PET imaging of NASH with [68Ga]-DOTA-PARPi did not reveal a significantly higher uptake in NASH models compared to the control. This underscores the necessity for further development of new chelator-based PARP1 tracers with high binding affinity to enable the visualization of PARP1 changes in NASH pathology.

4.
ACS Chem Neurosci ; 14(20): 3752-3760, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788055

RESUMO

The cannabinoid type 2 receptor (CB2) has been implicated in a variety of central and peripheral inflammatory diseases, prompting significant interest in the development of CB2-targeted diagnostic and therapeutic agents. A validated positron emission tomography (PET) radioligand for imaging CB2 in the living human brain as well as in peripheral tissues is currently lacking. As part of our research program, we have recently identified the trisubstituted pyridine, [18F]RoSMA-18-d6, which proved to be highly suitable for in vitro and in vivo mapping of CB2 in rodents. The aim of this study was to assess the performance characteristics of [18F]RoSMA-18-d6 in nonhuman primates (NHPs) to pave the way for clinical translation. [18F]RoSMA-18-d6 was synthesized from the respective tosylate precursor according to previously reported procedures. In vitro autoradiograms with NHP spleen tissue sections revealed a high binding of [18F]RoSMA-18-d6 to the CB2-rich NHP spleen, which was significantly blocked by coincubation with the commercially available CB2 ligand, GW405833 (10 µM). In contrast, no specific binding was observed by in vitro autoradiography with NHP brain sections, which was in agreement with the notion of a CB2-deficient healthy mammalian brain. In vitro findings were corroborated by PET imaging experiments in NHPs, where [18F]RoSMA-18-d6 uptake in the spleen was dose-dependently attenuated with 1 and 5 mg/kg GW405833, while no specific brain signal was observed. Remarkably, we observed tracer uptake and retention in the NHP spinal cord, which was reduced by GW405833 blockade, pointing toward a potential utility of [18F]RoSMA-18-d6 in probing CB2-expressing cells in the bone marrow. If these observations are substantiated in NHP models of enhanced leukocyte proliferation in the bone marrow, [18F]RoSMA-18-d6 may serve as a valuable marker for hematopoietic activity in various pathologies. In conclusion, [18F]RoSMA-18-d6 proved to be a suitable PET radioligand for imaging CB2 in NHPs, supporting its translation to humans.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Humanos , Compostos Radiofarmacêuticos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ligantes , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Primatas/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Radioisótopos de Flúor/metabolismo , Mamíferos/metabolismo
5.
Quant Imaging Med Surg ; 13(6): 3816-3826, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284126

RESUMO

Background: The precision reflecting repeated measurement error of quantitative parameters of flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for evaluating the therapeutic effect of solid tumor can help observe whether a real biologic change in glucose metabolism occurred, or if the change was caused by errors before and after the treatment. Methods: A total of 18 VX2 tumor-bearing male New Zealand rabbits confirmed by pathology were used, three of which were used for determining the best scanning time point after injection and 15 for a precision experiment by repeating PET/CT scans for three consecutive days. The PET volume computer-assisted reading (PET VCAR) software (GE Healthcare) was used to analyze the standardized uptake value (SUV) and total lesion glycolysis (TLG) parameters. The lean body mass (LBM) to calculate the SUV corrected for lean body mass (SUL) parameters was measured using dual energy X-ray absorptiometry (DXA). The precision was represented as the coefficient of variation of root mean square (RMS-CV) and standard deviation of root mean square (RMS-SD). The least significant change (LSC) was also calculated when considering precision. Results: The precision of SUV parameters, including SUVmax, SUVmean and SUVpeak ranged from 18.3% to 18.8%, which was similar to that of the SUL parameters (18.0-18.4%). Using 80% confidence interval (CI), the LSC of SUVmax and SULpeak were 33.1% and 33.3%, respectively; using 95% CI, the LSC of SUVmax and SULpeak were 50.1% and 51.0%, respectively. Conclusions: This research established the method of precision in a rabbit VX2 tumor model, which can be used for monitoring changes to assess the effects of drug treatment on solid tumors in experimental studies with 18F-FDG PET/CT imaging.

6.
Pharmacol Res ; 189: 106681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746361

RESUMO

OBJECTIVES: Translocator protein 18 kDa (TSPO) positron emission tomography (PET) can be harnessed for the non-invasive detection of macrophage-driven inflammation. [18F]LW223, a newly reported TSPO PET tracer which was insensitive to rs6971 polymorphism, showed favorable performance characteristics in a recent imaging study involving a rat myocardial infarction model. To enable quantitative neuroimaging with [18F]LW223, we conducted kinetic analysis in the non-human primate (NHP) brain. Further, we sought to assess the utility of [18F]LW223-based TSPO imaging in a first-in-human study. METHODS: Radiosynthesis of [18F]LW223 was accomplished on an automated module, whereas molar activities, stability in formulation, lipophilicity and unbound free fraction (fu) of the probe were measured. Brain penetration and target specificity of [18F]LW223 in NHPs were corroborated by PET-MR imaging under baseline and pre-blocking conditions using the validated TSPO inhibitor, (R)-PK11195, at doses ranging from 5 to 10 mg/kg. Kinetic modeling was performed using one-tissue compartment model (1TCM), two-tissue compartment model (2TCM) and Logan graphical analyses, using dynamic PET data acquisition, arterial blood collection and metabolic stability testing. Clinical PET scans were performed in two healthy volunteers (HVs). Regional brain standard uptake value ratio (SUVr) was assessed for different time intervals. RESULTS: [18F]LW223 was synthesized in non-decay corrected radiochemical yields (n.d.c. RCYs) of 33.3 ± 6.5% with molar activities ranging from 1.8 ± 0.7 Ci/µmol (n = 11). [18F]LW223 was stable in formulation for up to 4 h and LogD7.4 of 2.31 ± 0.13 (n = 6) and fu of 5.80 ± 1.42% (n = 6) were determined. [18F]LW223 exhibited good brain penetration in NHPs, with a peak SUV value of ca. 1.79 in the whole brain. Pre-treatment with (R)-PK11195 substantially accelerated the washout and attenuated the area under the time-activity curve, indicating in vivo specificity of [18F]LW223 towards TSPO. Kinetic modeling demonstrated that 2TCM was the most suitable model for [18F]LW223-based neuroimaging. Global transfer rate constants (K1) and total volumes of distribution (VT) were found to be 0.10 ± 0.01 mL/cm3/min and 2.30 ± 0.17 mL/cm3, respectively. Dynamic PET data analyses across distinct time windows revealed that the VT values were relatively stable after 60 min post-injection. In a preliminary clinical study with two healthy volunteers, [18F]LW223 exhibited good brain uptake and considerable tracer retention across all analyzed brain regions. Of note, an excellent correlation between SUVr with VT was obtained when assessing the time interval from 20 to 40 min post tracer injection (SUVr(20-40 min), R2 = 0.94, p < 0.0001), suggesting this time window may be suitable to estimate specific binding to TSPO in human brain. CONCLUSION: Our findings indicate that [18F]LW223 is suitable for quantitative TSPO-targeted PET imaging in higher species. Employing state-of-the-art kinetic modeling, we found that [18F]LW223 was effective in mapping TSPO throughout the NHP brain, with best model fits obtained from 2TCM and Logan graphical analyses. Overall, our results indicate that [18F]LW223 exhibits favorable tracer performance characteristics in higher species, and this novel imaging tool may hold promise to provide effective neuroinflammation imaging in patients with neurological disease.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Humanos , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Cinética , Tomografia por Emissão de Pósitrons/métodos , Primatas/metabolismo , Compostos Radiofarmacêuticos , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
7.
Acta Pharm Sin B ; 12(4): 1963-1975, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847497

RESUMO

As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in a variety of neurological disorders. Indeed, inhibition of PDE10A has proven to be of potential use for the treatment of central nervous system (CNS) pathologies caused by dysfunction of the basal ganglia-of which the striatum constitutes the largest component. A PDE10A-targeted positron emission tomography (PET) radioligand would enable a better assessment of the pathophysiologic role of PDE10A, as well as confirm the relationship between target occupancy and administrated dose of a given drug candidate, thus accelerating the development of effective PDE10A inhibitors. In this study, we designed and synthesized a novel 18F-aryl PDE10A PET radioligand, codenamed [18F]P10A-1910 ([18F]9), in high radiochemical yield and molar activity via spirocyclic iodonium ylide-mediated radiofluorination. [18F]9 possessed good in vitro binding affinity (IC50 = 2.1 nmol/L) and selectivity towards PDE10A. Further, [18F]9 exhibited reasonable lipophilicity (logD = 3.50) and brain permeability (P app > 10 × 10-6 cm/s in MDCK-MDR1 cells). PET imaging studies of [18F]9 revealed high striatal uptake and excellent in vivo specificity with reversible tracer kinetics. Preclinical studies in rodents revealed an improved plasma and brain stability of [18F]9 when compared to the current reference standard for PDE10A-targeted PET, [18F]MNI659. Further, dose-response experiments with a series of escalating doses of PDE10A inhibitor 1 in rhesus monkey brains confirmed the utility of [18F]9 for evaluating target occupancy in vivo in higher species. In conclusion, our results indicated that [18F]9 is a promising PDE10A PET radioligand for clinical translation.

8.
Nat Commun ; 13(1): 2810, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589724

RESUMO

Cellular therapies offer a promising therapeutic strategy for the highly malignant brain tumor, glioblastoma (GBM). However, their clinical translation is limited by the lack of effective target identification and stringent testing in pre-clinical models that replicate standard treatment in GBM patients. In this study, we show the detection of cell surface death receptor (DR) target on CD146-enriched circulating tumor cells (CTC) captured from the blood of mice bearing GBM and patients diagnosed with GBM. Next, we developed allogeneic "off-the-shelf" clinical-grade bifunctional mesenchymal stem cells (MSCBif) expressing DR-targeted ligand and a safety kill switch. We show that biodegradable hydrogel encapsulated MSCBif (EnMSCBif) has a profound therapeutic efficacy in mice bearing patient-derived invasive, primary and recurrent GBM tumors following surgical resection. Activation of the kill switch enhances the efficacy of MSCBif and results in their elimination post-tumor treatment which can be tracked by positron emission tomography (PET) imaging. This study establishes a foundation towards a clinical trial of EnMSCBif in primary and recurrent GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Transplante de Células-Tronco Hematopoéticas , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/terapia , Humanos , Camundongos , Recidiva Local de Neoplasia/terapia
9.
Acta Pharmacol Sin ; 43(11): 3002-3010, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35513432

RESUMO

Monoacylglycerol lipase (MAGL) constitutes a serine hydrolase that orchestrates endocannabinoid homeostasis and exerts its function by catalyzing the degradation of 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA). As such, selective inhibition of MAGL represents a potential therapeutic and diagnostic approach to various pathologies including neurodegenerative disorders, metabolic diseases and cancers. Based on a unique 4-piperidinyl azetidine diamide scaffold, we developed a reversible and peripheral-specific radiofluorinated MAGL PET ligand [18F]FEPAD. Pharmacokinetics and binding studies on [18F]FEPAD revealed its outstanding specificity and selectivity towards MAGL in brown adipose tissue (BAT) - a tissue that is known to be metabolically active. We employed [18F]FEPAD in PET studies to assess the abundancy of MAGL in BAT deposits of mice and found a remarkable degree of specific tracer binding in the BAT, which was confirmed by post-mortem tissue analysis. Given the negative regulation of endocannabinoids on the metabolic BAT activity, our study supports the concept that dysregulation of MAGL is likely linked to metabolic disorders. Further, we now provide a suitable imaging tool that allows non-invasive assessment of MAGL in BAT deposits, thereby paving the way for detailed mechanistic studies on the role of BAT in endocannabinoid system (ECS)-related pathologies.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Endocanabinoides/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ligantes , Inibidores Enzimáticos/farmacologia
10.
Bioorg Chem ; 120: 105620, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051705

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent liver malignancy, which ranks third in the cancer-related cause of deaths in worldwide and ninth in the United States. Currently, HCC is typically diagnosed by ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) scan at its late stage and the survival of HCC patients after diagnosis is usually very poor. Therefore, the development of novel and effective tool for early diagnosis, characterization and staging of HCC patients is of critical importance. Recent studies have demonstrated correlation of HCC with MAGL. In HCC cells, upregulation of MAGL activity enhanced cell invasiveness ability, while pharmacological blockade of MAGL led to significant inhibition of this trend. In this study, we aim to visualize the expression and activity of hepatic MAGL in different HCC cells and HCC patients' samples by taking advantage of positron emission tomography (PET) imaging with our previously developed MAGL radioligand [11C]MAGL-0519. As a result, [11C]MAGL-0519 exhibited higher radioactivity accumulation in HepaG2 and Hepa 1-6 cell lines compared with that of normal liver cells (AML-12 and LX-2), indicating higher MAGL expression levels in these HCC cells. This rationale was then validated by Western blot and immunofluorescent staining analysis. Furthermore, HCC patients' liver sections exhibited significantly increased uptake of [11C]MAGL-0519, which was consistent with the results in cell uptake assays. Taking together, these results provided a biological rationale and built a foundation to use [11C]MAGL-0519 as a potential and effective PET ligand for the diagnosis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Humanos , Ligantes , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Tomografia por Emissão de Pósitrons
11.
J Med Chem ; 64(20): 15053-15068, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34662125

RESUMO

Autotaxin (ATX) is a secreted phosphodiesterase that has been implicated in a remarkably wide array of pathologies, especially in fibrosis and cancer. While ATX inhibitors have entered the clinical arena, a validated probe for positron emission tomography (PET) is currently lacking. With the aim to develop a suitable ATX-targeted PET radioligand, we have synthesized a focused library of fluorinated imidazo[1,2-a]pyridine derivatives, determined their inhibition constants, and confirmed their binding mode by crystallographic analysis. Based on their promising in vitro properties, compounds 9c, 9f, 9h, and 9j were radiofluorinated. Also, a deuterated analog of [18F]9j, designated as [18F]ATX-1905 ([18F]20), was designed and proved to be highly stable against in vivo radiodefluorination compared with [18F]9c, [18F]9f, [18F]9h, and [18F]9j. These results along with in vitro and in vivo studies toward ATX in a mouse model of LPS-induced liver injury suggest that [18F]ATX-1905 is a suitable PET probe for the non-invasive quantification of ATX.


Assuntos
Inibidores Enzimáticos/farmacologia , Diester Fosfórico Hidrolases/análise , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Radioisótopos de Flúor , Ligantes , Camundongos , Estrutura Molecular , Diester Fosfórico Hidrolases/metabolismo , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade
12.
J Med Chem ; 64(11): 7083-7109, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34042442

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Descoberta de Drogas , Inibidores de Fosfodiesterase/química , Tomografia por Emissão de Pósitrons , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/uso terapêutico , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Nat Commun ; 11(1): 2778, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513979

RESUMO

The use of photothermal agents (PTAs) in cancer photothermal therapy (PTT) has shown promising results in clinical studies. The rapid degradation of PTAs may address safety concerns but usually limits the photothermal stability required for efficacious treatment. Conversely, PTAs with high photothermal stability usually degrade slowly. The solutions that address the balance between the high photothermal stability and rapid degradation of PTAs are rare. Here, we report that the inherent Cu2+-capturing ability of black phosphorus (BP) can accelerate the degradation of BP, while also enhancing photothermal stability. The incorporation of Cu2+ into BP@Cu nanostructures further enables chemodynamic therapy (CDT)-enhanced PTT. Moreover, by employing 64Cu2+, positron emission tomography (PET) imaging can be achieved for in vivo real-time and quantitative tracking. Therefore, our study not only introduces an "ideal" PTA that bypasses the limitations of PTAs, but also provides the proof-of-concept application of BP-based materials in PET-guided, CDT-enhanced combination cancer therapy.


Assuntos
Cobre/química , Hipertermia Induzida , Neoplasias/terapia , Fósforo/química , Fototerapia , Tomografia por Emissão de Pósitrons , Animais , Morte Celular , Linhagem Celular Tumoral , Terapia Combinada , Cobre/farmacocinética , Humanos , Íons , Camundongos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oligopeptídeos/química , Fósforo/farmacocinética , Polietilenoglicóis/química , Espectrofotometria Ultravioleta , Nanomedicina Teranóstica
14.
Front Oncol ; 10: 317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211335

RESUMO

Malignant cells support tumor proliferation and progression by adopting to metabolic changes. Tumor cells altered metabolism by increasing glucose uptake and fermentation of glucose to lactate, even in the aerobic state and the presence of functioning mitochondria. Glucose metabolism in tumor plasticity has attracted great interests by clinicians and scientists in the past decades. This review discusses the previous and emerging researches on the tumor plasticity altered by changing glucose metabolism in different cancer cells, including cancer stem cells (CSCs). In addition, we summarize the rising applications of glucose metabolism in tumor diagnosis and treatment. Our objective is to direct future investigation on this altered metabolic phenotype and its application in patient care.

15.
Anal Chim Acta ; 1097: 144-152, 2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-31910954

RESUMO

Disruption of copper homeostasis is associated with a number of severe diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Wilson's disease, and Menkes syndrome. Given this association, the detection and capture of Cu2+ in biological fluids and tissues may provide a new direction for the diagnosis and treatment of related disorders. The current analytical approaches, however, are challenging due to the high cost, complexity, and long time required to prepare and analyze samples. Here, we report a novel salen ligand, namely N,N'-(1,2-phenylene)bis(1-(1H-imidazol-4-yl)methanimine) (pimi), which can readily detect and concurrently capture Cu2+ from aqueous as well as biological mediums. Pimi can selectively and specifically detect Cu2+ from biofluid and cellular samples with rapid ccresponse time (<3 s) and an ultra-sensitive detecting limit (2.7 nM). More importantly, pimi showed excellent environmental tolerance and had a very wide pH range for detecting Cu2+ in a variety of biological samples. Attributed to the strong binding affinity and selectivity towards Cu2+, pimi was found to capture Cu2+ ions from Cu-Aß complexes, thus inhibiting copper-induced aggregation of Aß and protecting neuronal cells from the toxicity of aggregated Aß. These results provide a compelling starting point for further fine-tuning of salen-based chemosensor for the diagnosis and treatment of diseases associated with the hyperaccumulation of copper.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cobre/análise , Cobre/toxicidade , Avaliação Pré-Clínica de Medicamentos , Etilenodiaminas/química , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Íons/análise , Íons/farmacologia
16.
Mol Imaging ; 18: 1536012119871455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31478458

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a significant public health challenge afflicting approximately 1 billion individuals both in the Western world and in the East world. While liver biopsy is considered as gold standard in the diagnosis and staging of liver fibrosis, noninvasive imaging technologies, including ultrasonography, computed tomography, single-photon emission computed tomography (SPECT), magnetic resonance imaging, and positron emission tomography (PET) could offer more sensitive, comprehensive, and quantitative measurement for NAFLD. In this review, we focus on recent development and applications of PET/SPECT molecular probes that enable multispatial/temporal visualization and quantification of physiopathological progress at the molecular level in the NAFLD. We shall also discuss the limitations of current radioligands and future direction for PET/SPECT probe development.


Assuntos
Sondas Moleculares/análise , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Biomarcadores/metabolismo , Hematologia/métodos , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tomografia por Emissão de Pósitrons/métodos
17.
J Med Chem ; 62(7): 3336-3353, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30829483

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that degrades 2-arachidonoylglycerol (2-AG) in the endocannabinoid system (eCB). Selective inhibition of MAGL has emerged as a potential therapeutic approach for the treatment of diverse pathological conditions, including chronic pain, inflammation, cancer, and neurodegeneration. Herein, we disclose a novel array of reversible and irreversible MAGL inhibitors by means of "tail switching" on a piperazinyl azetidine scaffold. We developed a lead irreversible-binding MAGL inhibitor 8 and reversible-binding compounds 17 and 37, which are amenable for radiolabeling with 11C or 18F. [11C]8 ([11C]MAGL-2-11) exhibited high brain uptake and excellent binding specificity in the brain toward MAGL. Reversible radioligands [11C]17 ([11C]PAD) and [18F]37 ([18F]MAGL-4-11) also demonstrated excellent in vivo binding specificity toward MAGL in peripheral organs. This work may pave the way for the development of MAGL-targeted positron emission tomography tracers with tunability in reversible and irreversible binding mechanisms.


Assuntos
Azetidinas/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Monoacilglicerol Lipases/antagonistas & inibidores , Piperazinas/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Animais , Azetidinas/síntese química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Estudo de Prova de Conceito , Ensaio Radioligante , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
18.
Int J Med Chem ; 2017: 4852537, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201461

RESUMO

Antagonism of the adenosine A2A receptor on T cells blocks the hypoxia-adenosinergic pathway to promote tumor rejection. Using an in vivo immunoassay based on the Concanavalin A mouse model, a series of A2A antagonists were studied and identified preladenant as a potent lead compound for development. Molecular modeling was employed to assist drug design and subsequent synthesis of analogs and those of tozadenant, including fluorinated polyethylene glycol PEGylated derivatives. The efficacy of the analogs was evaluated using two in vitro functional bioassays, and compound 29, a fluorinated triethylene glycol derivative of preladenant, was confirmed as a potential immunotherapeutic agent.

19.
Mol Imaging ; 16: 1536012117736669, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067878

RESUMO

The Massachusetts General Hospital Radiochemistry Program, in collaboration with Pfizer, has developed unique 11C and 18F-labeling strategies to synthesize isotopologs of lorlatinib (PF-06463922) which is undergoing phase III clinical trial investigations for treatment of non-small-cell lung cancers with specific molecular alterations. A major goal in cancer therapeutics is to measure the concentrations of this drug in the brain metastases of patients with lung cancer, and penetration of the blood-brain barrier is important for optimal therapeutic outcomes. Our recent publication in Nature Communications employed radiolabeled lorlatinib and positron emission tomography (PET) studies in preclinical models including nonhuman primates (NHPs) that demonstrated high brain permeability of this compound. Our future work with radiolabeled lorlatinib will include advanced PET evaluations in rodent tumor models and normal NHPs with the goal of clinical translation.


Assuntos
Encéfalo/metabolismo , Lactamas Macrocíclicas/farmacologia , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Aminopiridinas , Quinase do Linfoma Anaplásico , Animais , Encéfalo/efeitos dos fármacos , Humanos , Lactamas , Lactamas Macrocíclicas/síntese química , Lactamas Macrocíclicas/química , Macaca mulatta , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis , Receptores Proteína Tirosina Quinases/metabolismo
20.
Chemistry ; 23(62): 15553-15577, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28704575

RESUMO

Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted.


Assuntos
Marcação por Isótopo/métodos , Nucleotídeos/química , Peptídeos/química , Tomografia por Emissão de Pósitrons , Reação de Cicloadição , Radioisótopos de Flúor/química , Humanos , Compostos Radiofarmacêuticos/química , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA