Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38530713

RESUMO

Existing data on the acoustic properties of low-temperature biological materials is limited and widely dispersed across fields. This makes it difficult to employ this information in the development of ultrasound applications in the medical field, such as cryosurgery and rewarming of cryopreserved tissues. In this review, the low-temperature acoustic properties of biological materials, and the measurement methods used to acquire them were collected from a range of scientific fields. The measurements were reviewed from the acoustic setup to thermal methodologies for samples preparation, temperature monitoring, and system insulation. The collected data contain the longitudinal and shear velocity, and attenuation coefficient of biological soft tissues and biologically relevant substances-water, aqueous solutions, and lipids-in the temperature range down to -50 °C and in the frequency range from 108 kHz to 25 MHz. The multiple reflection method (MRM) was found to be the preferred method for low-temperature samples, with a buffer rod inserted between the transducer and sample to avoid direct contact. Longitudinal velocity changes are observed through the phase transition zone, which is sharp in pure water, and occurs more slowly and at lower temperatures with added solutes. Lipids show longer transition zones with smaller sound velocity changes; with the longitudinal velocity changes observed during phase transition in tissues lying between these two extremes. More general conclusions on the shear velocity and attenuation coefficient at low-temperatures are restricted by the limited data. This review enhance knowledge guiding for further development of ultrasound applications in low-temperature biomedical fields, and may help to increase the precision and standardization of low-temperature acoustic property measurements.


Assuntos
Temperatura Baixa , Lipídeos , Água , Água/química , Lipídeos/química , Animais , Humanos , Acústica , Ultrassonografia/métodos
2.
Anal Chem ; 93(23): 8134-8142, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048649

RESUMO

On-chip imaging flow cytometry has been widely used in cancer biology, immunology, microbiology, and drug discovery. Pure optical imaging combined with flow cytometry to derive chemical, structural, and morphological features of cells provides systematic insights into biological processes. However, due to the high concentration and strong optical attenuation of red blood cells, preprocessing is necessary for optical flow cytometry while dealing with whole blood. In this study, we develop an on-chip photoacoustic imaging flow cytometry (PAIFC), which combines multicolor high-speed photoacoustic microscopy and microfluidics for cell imaging. The device employs a micro-optical scanner to achieve a miniaturized outer size of 30 × 17 × 24 mm3 and ultrafast cross-sectional imaging at a frame rate of 1758 Hz and provides lateral and axial resolutions of 2.2 and 33 µm, respectively. Using a multicolor strategy, PAIFC is able to differentiate cells labeled by external contrast agents, detect melanoma cells with an endogenous contrast in whole blood, and image melanoma cells in blood samples from tumor-bearing mice. The results suggest that PAIFC has sufficient sensitivity and specificity for future cell-on-chip applications.


Assuntos
Técnicas Fotoacústicas , Animais , Eritrócitos , Citometria de Fluxo , Camundongos , Microscopia , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA