Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 24(1): 23, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34993666

RESUMO

The recent detection of potent carcinogenic nitrosamine impurities in several human medicines has triggered product recalls and interrupted the supply of critical medications for hundreds of millions of patients, illuminating the need for increased testing of nitrosamines in pharmaceutical products. However, the development of analytical methods for nitrosamine detection is challenging due to high sensitivity requirements, complex matrices, and the large number and variety of samples requiring testing. Herein, we report an analytical method for the analysis of a common nitrosamine, N-nitrosodimethylamine (NDMA), in pharmaceutical products using full evaporation static headspace gas chromatography with nitrogen phosphorous detection (FE-SHSGC-NPD). This method is sensitive, specific, accurate, and precise and has the potential to serve as a universal method for testing all semi-volatile nitrosamines across different drug products. Through elimination of the detrimental headspace-liquid partition, a quantitation limit of 0.25 ppb is achieved for NDMA, a significant improvement upon traditional LC-MS methods. The extraction of nitrosamines directly from solid sample not only simplifies the sample preparation procedure but also enables the method to be used for different products as is or with minor modifications, as demonstrated by the analysis of NDMA in 10+ pharmaceutical products. The in situ nitrosation that is commonly observed in GC methods for nitrosamine analysis was completely inhibited by the addition of a small volume solvent containing pyrogallol, phosphoric acid, and isopropanol. Employing simple procedures and low-cost instrumentation, this method can be implemented in any analytical laboratory for routine nitrosamine analysis, ensuring patient safety and uninterrupted supply of critical medications. Graphical Abstract.


Assuntos
Cromatografia Gasosa/métodos , Dimetilnitrosamina/análise , Preparações Farmacêuticas/análise , Cromatografia Líquida/métodos , Contaminação de Medicamentos/prevenção & controle , Limite de Detecção , Espectrometria de Massas/métodos , Nitrosaminas/análise , Preparações Farmacêuticas/química , Reprodutibilidade dos Testes
2.
J Chromatogr A ; 1631: 461535, 2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-32956878

RESUMO

Accurate quantitation of low dose, multi-active dissolution samples poses unique challenges in the pharmaceutical industry, often resulting in separate HPLC methods for each active or the use of multiple detectors for increased sensitivity. In this study, we report a fast, isocratic HPLC method utilizing only UV detection for dissolution testing of low dose desogestrel and ethinylestradiol tablets. Rapid separation is completed in 5 min using isocratic elution at a flow rate of 0.45 mL/min, with a column temperature at 30 °C, an injection volume of 50 µL and the detection wavelength at 200 nm. After extensive method development and optimization, the cyano stationary phase was used to overcome the large difference in hydrophobicity for desogestrel and ethinylestradiol, providing balanced retention for both analytes under isocratic elution. Chromatography modeling software was used to provide a rapid analysis of multiple columns and chromatography conditions. The optimized method boasts fast and efficient separation through use of a short, small I.D. column and a large injection volume of dissolution solution to achieve high sensitivity. The stable baseline from an isocratic separation allows low detection wavelengths to be used, resulting in accurate and precise quantitation of both desogestrel and ethinylestradiol. The method has been successfully validated for specificity, linearity, accuracy and precision in the range of 75 - 600 ng/mL for desogestrel and 10 - 80 ng/mL for ethinylestradiol using both HPLC and UHPLC systems. The method robustness was characterized using a design of experiment approach, and the operational design region of the method was established.


Assuntos
Desogestrel , Etinilestradiol , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Solubilidade , Comprimidos
3.
J Sep Sci ; 42(6): 1222-1229, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30618204

RESUMO

In this study, we discuss the development of a static headspace gas chromatography method for the analysis of residual acetone as well as its enriched impurities including mesityl oxide and diacetone alcohol, in a spray dried dispersion. The major challenges include the instability of mesityl oxide and diacetone alcohol at high temperature and peak tailing of diacetone alcohol. It was found that the headspace oven temperature has to be controlled to 150°C or below to prevent degradation beyond an acceptable level (< 1%). The peak tailing of diacetone alcohol was attributed to the "Phase Soaking" effect due to excessive diluent, which may condense and temporarily modify the stationary phase. The peak shape of diacetone alcohol is dependent on the column loading capacity and the peak area of N-methyl pyrrolidone, the solvent that elutes after diacetone alcohol. The headspace oven temperature was set at 140°C, where the highest response ratio of diacetone alcohol/N-methyl pyrrolidone at 1.46 and thus the best sensitivity was obtained. The calculated quantitation limits were 1 ppm for acetone, 3 ppm for mesityl oxide and 31 ppm for diacetone alcohol. The method successfully passed validation criteria for specificity, linearity, accuracy, and precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA