Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 893278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592563

RESUMO

The far-red-impaired response 1 (FAR1) transcription family were initially identified as important factors for phytochrome A (phyA)-mediated far-red light signaling in Arabidopsis; they play crucial roles in controlling the growth and development of plants. The reported reference genome sequences of Arachis, including A. duranensis, A. ipaensis, A. monticola, and A. hypogaea, and its related species Glycine max provide an opportunity to systematically perform a genome-wide identification of FAR1 homologous genes and investigate expression patterns of these members in peanut species. Here, a total of 650 FAR1 genes were identified from four Aarchis and its closely related species G. max. Of the studied species, A. hypogaea contained the most (246) AhFAR1 genes, which can be classified into three subgroups based on phylogenic relationships. The synonymous (Ks) and non-synonymous (Ka) substitution rates, phylogenetic relationship and synteny analysis of the FAR1 family provided deep insight into polyploidization, evolution and domestication of peanut AhFAR1 genes. The transcriptome data showed that the AhFAR1 genes exhibited distinct tissue- and stage-specific expression patterns in peanut. Three candidate genes including Ahy_A10g049543, Ahy_A06g026579, and Ahy_A10g048401, specifically expressed in peg and pod, might participate in pod development in the peanut. The quantitative real-time PCR (qRT-PCR) analyses confirmed that the three selected genes were highly and specifically expressed in the peg and pod. This study systematically analyzed gene structure, evolutionary characteristics and expression patterns of FAR1 gene family, which will provide a foundation for the study of genetic and biological function in the future.

2.
Toxins (Basel) ; 11(6)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163657

RESUMO

Aflatoxin is considered a "hidden poison" due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer's fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern "omics" approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.


Assuntos
Aflatoxinas/análise , Arachis/microbiologia , Aspergillus , Resistência à Doença/genética , Contaminação de Alimentos/prevenção & controle , Aflatoxinas/toxicidade , Agricultura/métodos , Animais , Arachis/genética , Interações Hospedeiro-Patógeno , Humanos , Doenças das Plantas/genética
3.
Mol Plant ; 12(7): 920-934, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902685

RESUMO

Cultivated peanut (Arachis hypogaea) is an allotetraploid crop planted in Asia, Africa, and America for edible oil and protein. To explore the origins and consequences of tetraploidy, we sequenced the allotetraploid A. hypogaea genome and compared it with the related diploid Arachis duranensis and Arachis ipaensis genomes. We annotated 39 888 A-subgenome genes and 41 526 B-subgenome genes in allotetraploid peanut. The A. hypogaea subgenomes have evolved asymmetrically, with the B subgenome resembling the ancestral state and the A subgenome undergoing more gene disruption, loss, conversion, and transposable element proliferation, and having reduced gene expression during seed development despite lacking genome-wide expression dominance. Genomic and transcriptomic analyses identified more than 2 500 oil metabolism-related genes and revealed that most of them show altered expression early in seed development while their expression ceases during desiccation, presenting a comprehensive map of peanut lipid biosynthesis. The availability of these genomic resources will facilitate a better understanding of the complex genome architecture, agronomically and economically important genes, and genetic improvement of peanut.


Assuntos
Arachis , Metabolismo dos Lipídeos/genética , Óleo de Amendoim/metabolismo , Arachis/genética , Genoma de Planta , Filogenia , Análise de Sequência de DNA , Transcriptoma/genética , Sequenciamento Completo do Genoma
5.
Front Plant Sci ; 9: 604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774047

RESUMO

Peanut (Arachis hypogaea L.), an important leguminous crop, is widely cultivated in tropical and subtropical regions. Peanut is an allotetraploid, having A and B subgenomes that maybe have originated in its diploid progenitors Arachis duranensis (A-genome) and Arachis ipaensis (B-genome), respectively. We previously sequenced the former and here present the draft genome of the latter, expanding our knowledge of the unique biology of Arachis. The assembled genome of A. ipaensis is ~1.39 Gb with 39,704 predicted protein-encoding genes. A gene family analysis revealed that the FAR1 family may be involved in regulating peanut special fruit development. Genomic evolutionary analyses estimated that the two progenitors diverged ~3.3 million years ago and suggested that A. ipaensis experienced a whole-genome duplication event after the divergence of Glycine max. We identified a set of disease resistance-related genes and candidate genes for biological nitrogen fixation. In particular, two and four homologous genes that may be involved in the regulation of nodule development were obtained from A. ipaensis and A. duranensis, respectively. We outline a comprehensive network involved in drought adaptation. Additionally, we analyzed the metabolic pathways involved in oil biosynthesis and found genes related to fatty acid and triacylglycerol synthesis. Importantly, three new FAD2 homologous genes were identified from A. ipaensis and one was completely homologous at the amino acid level with FAD2 from A. hypogaea. The availability of the A. ipaensis and A. duranensis genomic assemblies will advance our knowledge of the peanut genome.

6.
Proc Natl Acad Sci U S A ; 113(24): 6785-90, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247390

RESUMO

Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.


Assuntos
Arachis , Genoma de Planta/fisiologia , Família Multigênica/fisiologia , Óleos de Plantas/metabolismo , Proteínas de Plantas , Tetraploidia , Arachis/genética , Arachis/metabolismo , Humanos , Óleo de Amendoim , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA