Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 904: 166819, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673236

RESUMO

Cadmium (Cd) pollution is an important threat to agricultural production globally. Silicon (Si) and silicon nanoparticles (Si NPs) can mitigate Cd stress in plants. However, the mechanisms underlying the impacts of Si and Si NPs on Cd resistance, particularly in low-Si accumulators, remain inadequately understood. Accordingly, we conducted a comparative investigation into the roles of Si and Si NPs in regulating the antioxidant system (enzymes and antioxidants) and Cd uptake (influx rate, symplastic and apoplastic pathways) in tomato (a typical low-Si accumulator). The results revealed that Si and Si NPs improved tomato growth under Cd stress, and principal component analysis (PCA) demonstrated that Si NPs were more effective than Si. For oxidative damage, redundancy analysis (RDA) results showed that Si NPs ameliorated oxidative damage in both shoots and roots, whereas Si predominantly alleviated oxidative damage in roots. Simultaneously, Si and Si NPs regulated antioxidant enzymes and nonenzymatic antioxidants with distinct targets and strengths. Furthermore, Si and Si NPs decreased Cd concentration in tomato shoot, root, and xylem sap, while Si NPs induced a more significant decline in shoot and xylem sap Cd. Noninvasive microtest and quantitative estimation of trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic (PTS, an apoplastic tracer) showed that Si and Si NPs reduced the Cd influx rate and apoplastic Cd uptake, while Si NPs induced a more significant reduction. Moreover, Si regulated the expression of genes responsible for Cd uptake (NRAMP2 and LCT1) and compartmentalization (HMA3), while Si NPs reduced the expression of NRAMP2. In conjunction with RDA, the results showed that Si and Si NPs decreased Cd uptake mainly by regulating the symplastic and apoplastic pathways, respectively. Overall, our results indicate that Si NPs is more effective in promoting tomato growth and alleviating oxidative damage than Si in tomato under Cd stress by modulating the antioxidant system and reducing apoplastic Cd uptake.


Assuntos
Nanopartículas , Poluentes do Solo , Solanum lycopersicum , Antioxidantes/metabolismo , Silício/farmacologia , Silício/análise , Cádmio/análise , Nanopartículas/toxicidade , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
2.
Front Pharmacol ; 14: 1194545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554985

RESUMO

Background: Cholangiocarcinoma (CCA) is a highly lethal and aggressive epithelial tumor of the hepatobiliary system. A poor prognosis, propensity for relapse, low chance of cure and survival are some of its hallmarks. Pemigatinib, the first targeted treatment for CCA in the United States, has been demonstrated to have a significant response rate and encouraging survival data in early-phase trials. The adverse events (AEs) of pemigatinib must also be determined. Objective: To understand more deeply the safety of pemigatinib in the real world through data-mining of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Methods: Disproportionality analysis was employed in a retrospective pharmacovigilance investigation to identify the AEs linked to pemigatinib use as signals. Data were collected between 1 January 2020 to 30 June 2022. Four data-mining methods (proportional reporting odds ratio; proportional reporting ratio; Bayesian confidence propagation neural networks of information components; empirical Bayes geometric means) were used to calculate disproportionality. Results: A total of 203 cases using pemigatinib as the prime-suspect medication were found in our search, which involved 99 preferred terms (PTs). Thirteen signals of pemigatinib-induced AEs in seven System Organ Classes were detected after confirming the four algorithms simultaneously. Nephrolithiasis was an unexpected significant AE not listed on the drug label found in our data-mining. Comparison of the differences between pemigatinib and platinum drugs in terms of 33 PTs revealed that 13 PTs also met the criteria of the four algorithms. Ten of these PTs were identical to those compared with all other drugs, in which (excluding a reduction in phosphorus in blood) other PT signal values were higher than those of all other drugs tested. However, comparison of the differences between pemigatinib and infigratinib in terms of the 33 PTs revealed no significant signals in each algorithm method. Conclusion: Some significant signals were detected between pemigatinib use and AEs. PTs with apparently strong signals and PTs not mentioned in the label should be taken seriously.

3.
Environ Pollut ; 307: 119530, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636714

RESUMO

Nitric oxide (NO) and ethylene are both important signaling molecules which participate in numerous plant development processes and environmental stress resistance. Here, we investigate whether and how NO interacts with ethylene during the development of endodermal barriers that have major consequences for the apoplastic uptake of cadmium (Cd) in the hyperaccumulator Sedum alfredii. In response to Cd, an increased NO accumulation, while a decrease in ethylene production was observed in the roots of S. alfredii. Exogenous supplementation of NO donor SNP (sodium nitroprusside) decreased the ethylene production in roots, while NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) had the opposite effect. The exogenous addition of NO affected the ethylene production through regulating the expression of genes related to ethylene synthesis. However, upon exogenous ethylene addition, roots retained their NO accumulation. The abovementioned results suggest that ethylene is downstream of the NO signaling pathway in S. alfredii. Regardless of Cd, addition of SNP promoted the deposition of endodermal barriers via regulating the genes related to Casparian strips deposition and suberization. Correlation analyses indicate that NO positively modifies the formation of endodermal barriers via the NO-ethylene signaling pathway, Cd-induced NO accumulation interferes with the synthesis of ethylene, leading to a deposition of endodermal barriers in S. alfredii.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Etilenos/metabolismo , Etilenos/farmacologia , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Sedum/genética , Sedum/metabolismo , Poluentes do Solo/metabolismo
4.
Environ Sci Pollut Res Int ; 29(42): 63768-63781, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461422

RESUMO

In this study, hydrochars and biochars were prepared from rice husk (RH) and Zizania latifolia straw (ZL) at various pyrolysis temperatures as absorbents, for removing toxic ions from single and competitive solutions of cadmium (Cd) and/or lead (Pb). The adsorption efficiencies of Cd and Pb in both hydrochars and biochars were lower in the competitive solution than in the single solution, and the absorbents had a stronger affinity for Pb than for Cd. Compared to hydrochars, biochars showed more favorable Cd and Pb adsorption capacities in the single or competitive solutions, and the ZL biochars had the maximum adsorption capacity among them. The SEM and FTIR analyses suggest that the predominant adsorption mechanisms of biochars and hydrochars are surfaces monolayer adsorption, precipitation, complexation, and coordination with π electrons. However, hydrochars derived from ZL exhibited an optimal additional Pb adsorption capacity in the high-level (5 ~ 10 mg L-1 Cd and Pb) competitive solution. This extra Pb adsorption of hydrochars was likely attributed to the Si-O-Si groups and more bumpy structure. Zizania latifolia straw biochar had a huge potential removal of Cd or/and Pb, and applying hydrochars as absorbents was beneficial to the removal of Cd and Pb in polluted solutions.


Assuntos
Cádmio , Oryza , Adsorção , Cádmio/análise , Carvão Vegetal/química , Chumbo
5.
J Healthc Eng ; 2022: 5201354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392155

RESUMO

Background: Multiple myeloma (MM) is one of the hitherto incurable malignant blood tumors. Bortezomib plays an important role in the treatment of MM. Objective: We aimed to compare effectiveness, safety, and pharmacoeconomic evaluations of the original research drug and the generic drug Bortezomib in the treatment of MM, so as to provide a reasonable basis for the selection of drugs in clinical diagnosis and treatment. Methods: A collection of 374 patients with MM were diagnosed and treated with combined Bortezomib in our hospital from July 2019 to January 2020.Two hundred and sixty nine cases met the criteria for inclusion and discharge. According to the different drug manufacturers, divided into the original research drug group (n = 149) and the generic drug group (n = 120). The effectiveness and safety were separately counted, and use the cost-minimization analysis to make the pharmacoeconomic evaluations. Results: Compared with the results of the two groups, there was no statistical difference between the two groups of treatment efficacy or adverse reaction rates (P > 0.05). The average daily cost of the original research drug group was 2954.38 Chinese yuan (CNY), the average treatment cost per cycle was 32967.69 CNY, the average daily cost of the generic drug group was 2697.29 CNY, and the average treatment cost per cycle was 29129.57 CNY. The price of the generic drug group is lower than the original drug group, and there was a statistical difference between the two groups (P < 0.05). Conclusion: There was no difference between the two groups of effectiveness or safety, and the generic drug is more economical in the treatment.


Assuntos
Mieloma Múltiplo , Bortezomib/uso terapêutico , Medicamentos Genéricos/uso terapêutico , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Resultado do Tratamento
6.
Plant Physiol Biochem ; 175: 12-22, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35158318

RESUMO

Root border cells (RBCs) and their mucilage are considered to play an important role in protecting root tip from aluminum (Al) toxicity, but their interactions with silicon (Si) under Al stress still remain unclear. Here, we investigated the effect of Si on the formation of RBCs under Al stress and the related detoxification mechanism in hydroponically grown rice (Oryza sativa L.). The results showed that Si could prevent the separation of RBCs from each other by increasing the degree of pectin methylesterification in root tip cell wall, thereby keeping more RBCs around the root tip. Also, Si maintained the viability of RBCs, increased the amount of mucilage, and reduced the content of total Al and free Al in root tips. Moreover, the RBCs accumulated more Al and Si simultaneously than root tip in the Al treatments with Si supply. Overall, these results indicated that Si reduced the toxicity of Al to RBCs through formation of Si-Al complex on the RBCs, thereby improving the viability of RBCs and promoting the secretion of mucilage. Concomitantly, Si, RBCs and their mucilage could form a protective sheath at the root tip, which prevented Al from diffusing into the root tip, thereby alleviating Al toxicity in rice root tips.

7.
Plant Cell Physiol ; 63(3): 340-352, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34981810

RESUMO

Silicon (Si) can alleviate aluminum (Al) toxicity in rice (Oryza sativa L.), but the mechanisms underlying this beneficial effect have not been elucidated, especially under long-term Al stress. Here, the effects of Al and Si on the suberization and development of rice roots were investigated. The results show that, as the Al exposure time increased, the roots accumulated more Al, and Al enhanced the deposition of suberin in roots, both of which ultimately inhibited root growth and nutrient absorption. However, Si restricted the apoplastic and symplastic pathways of Al in roots by inhibiting the uptake and transport of Al, thereby reducing the accumulation of Al in roots. Meanwhile, the Si-induced drop in Al concentration reduced the suberization of roots caused by Al through down-regulating the expression of genes related to suberin synthesis and then promoted the development of roots (such as longer and more adventitious roots and lateral roots). Moreover, Si also increased nutrient uptake by Al-stressed roots and thence promoted the growth of rice. Overall, these results indicate that Si reduced Al-induced suberization of roots by inhibiting the uptake and transport of Al in roots, thereby amending root growth and ultimately alleviating Al stress in rice. Our study further clarified the toxicity mechanism of Al in rice and the role of Si in reducing Al content and restoring root development under Al stress.


Assuntos
Oryza , Alumínio/farmacologia , Oryza/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Silício/farmacologia
8.
J Hazard Mater ; 422: 126859, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34449335

RESUMO

Phytoremediation is a cost-effective and environmentally-friendly method to treat cadmium (Cd) contaminated soils, however, there is still a lack of safe disposal methods of harvested hyperaccumulators. In this study, by integrating glycolysis and pyrolysis, we investigated the possibility of bioproduct production and Cd collection from the hyperaccumulator Sedum alfredii. By means of acid-alkali pretreatment, the degree of cellulose polymerization was reduced by 36.24% while the surface accessibility was increased by 115.80%, resulting in a bioethanol yield of 9.29%. Meanwhile, 99.22% of total Cd of biomass could be reclaimed by collecting H2SO4-pretreatment waste. The saccharification residue was subsequently modified by NaOH-pretreatment-filtrate and converted into biochar at 500 °C which possessed a maximum Cd2+ sorption capacity of 60.52 mg g-1 based on the Langmuir model. Furthermore, sustainability analysis indicated that the economic input of this process is acceptable when considering its good environmental benefits. Taken together, our study provides a strategy for simultaneous bioethanol and biochar production during Cd collection from the hyperaccumulator S. alfredii, which could be a promising alternative for the suitable treatment of metal-enriched plants.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Glicólise , Raízes de Plantas/química , Pirólise , Poluentes do Solo/análise
9.
J Hazard Mater ; 417: 125955, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-33975168

RESUMO

Cadmium (Cd) is harmful to the environment and threatens human health. With the increasing use of cerium oxide nanoparticles (CeO2NPs) in extensive industries, investigating the combination of CeO2NPs and plants has attracted research interests for phytoremediation. Here, we explored the effects of CeO2NPs on Cd uptake, transport and the consequent Cd accumulation in Sedum alfredii. Exposure of 50 or 500 mg L-1 CeO2NPs alone had no apparent damaging effects on plant growth. However, upon Cd condition, the consistent CeO2NPs decreased Cd concentrations in the roots and shoots by up to 37%. Furthermore, the application of a metabolic inhibitor revealed that CeO2NPs mainly decreased the Cd uptake in roots by the apoplastic pathway. Simultaneously, CeO2NPs accelerated the development of Casparian strips (CSs) and suberin, which was further proven by the elevated expression levels of genes associated with their formation, SaCASP, SaGPAT5, SaKCS20 and SaCYP86A1. Compared to CeO2NPs added alone, the concurrent Cd decreased the Ce contents in the roots and altered its translocation from root to shoot. Taken together, both CeO2NPs and Cd influence the interactional uptake of both chemicals in roots of S. alfredii mainly via the apoplastic pathway which is primarily regulated by the development of CSs and suberin.


Assuntos
Nanopartículas , Sedum , Cádmio/toxicidade , Cério , Humanos , Raízes de Plantas
10.
Environ Pollut ; 283: 117107, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862339

RESUMO

Cadmium (Cd) and lead (Pb) pollution in soil and their accumulation in edible parts possess a worldwide eco-environmental and health risk, especially in developing countries. Recently, organosilicone fertilizer (OSiF) has been reported to reduce uptake of heavy metals, but the effectiveness has not been verified and its associated mechanisms are not fully understood. This work investigated whether and how OSiF and mineral silicon fertilizer (MSiF) affect mitigation of Cd and Pb stress in rice (Oryza sativa). Both soil incubation and pot experiments were conducted to assess the effect of OSiF and MSiF on bioavailability of Cd and Pb in soil and their accumulation in rice. Additionally, a hydroponic experiment was conducted to study whether Si in rice can alleviate Cd stress. We found that both Si fertilizers could increase soil pH, induce the transformation of the acid soluble and reducible fractions of Cd and Pb to the oxidizable and residual fractions in soil, decreasing their bioavailability and the uptake of Cd and Pb in rice. However, Si in OSiF was not phyto-available, but Si in MSiF was available since available Si in soil and Si in plant increased in MSiF treatments but not in OSiF treatments. Meanwhile, rice grain yields significantly increased and the Cd and Pb content of brown rice reduced in MSiF treatments but not in OSiF treatments. In addition, Si was found to be able to alleviate Cd stress by improving the antioxidant capacity of rice. These results suggested that the decreased Cd and Pb accumulation in OSiF-treated rice was due to Cd and Pb immobilization in soil simply with pH increase, but in MSiF-treated rice Cd and Pb immobilization in soil (ex planta effect) and Si-conferred inhibitory effect of root-to-shoot Cd and Pb transport (in planta effect) contribute to the lower accumulation in rice.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Fertilizantes , Chumbo , Minerais , Silício , Solo , Poluentes do Solo/análise
11.
J Hazard Mater ; 403: 123729, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264898

RESUMO

Ethylene is an important phytohormone for plant adaptation to heavy metal stress. However, the effects of ethylene on radial apoplastic transport of Cd remain elusive. This study investigated the role of ethylene on apoplastic barriers development and consequences for Cd uptake in Sedum alfredii. In response to Cd, endogenous ethylene production in hyperaccumulating ecotype (HE) roots was decreased due to the down-regulated expressions of ethylene biosynthesis genes, while the opposite result was observed in non-hyperaccumulating ecotype (NHE). Interestingly, the ethylene emission in HE was always higher than that in NHE, regardless of Cd concentrations. Results of exogenous application of ethylene biosynthesis precursor/inhibitor indicate that ethylene with high level would delay the formation of apoplastic barriers in HE through restraining phenylalanine ammonia lyase activity and gene expressions related to lignin/suberin biosynthesis. Simultaneously, correlation analyses suggest that Cd-induced apoplastic barriers formation may be also regulated by ethylene signaling. By using an apoplastic bypass tracer and scanning ion-selected electrode, we observed that the delayed deposition of apoplastic barriers significantly promoted Cd influx in roots. Taken together, high endogenous ethylene in HE postponed the formation of apoplastic barriers and thus promoted the Cd accumulation in the apoplast of roots.


Assuntos
Sedum , Cádmio , Etilenos , Reguladores de Crescimento de Plantas , Raízes de Plantas , Sedum/genética
12.
Environ Pollut ; 268(Pt A): 115665, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010543

RESUMO

Root cell wall (RCW) modification is a widespread important defense strategy of plant to cope with trace metals. However, mechanisms underlying its remolding in cadmium (Cd) accumulation are still lacking in hyperaccumulators. In this study, changes of RCW structures and components between nonhyperaccumulating ecotype (NHE) and hyperaccumulating ecotype (HE) of Sedum alfredii were investigated simultaneously. Under 25 µM Cd treatment, RCW thickness of NHE is nearly 2 folds than that of HE and the thickened cell wall of NHE was enriched in low-methylated pectin, leading to more Cd trapped in roots tightly. In the opposite, large amounts of high-methylated pectin were assembled around RCW of HE with Cd supply, in this way, HE S. alfredii decreased its root fixation of Cd and enhanced Cd migration into xylem. TEM and AFM results further confirmed that thickened cell wall was caused by the increased amounts of cellulose and lignin while root tip lignification was resulted from variations of sinapyl (S) and guaiacyl (G) monomers. Overall, thickened cell wall and methylated pectin have synchronicity in spatial location of roots, and their coordination contributed to Cd accumulation in S. alfredii.


Assuntos
Sedum , Poluentes do Solo , Cádmio , Parede Celular , Pectinas , Raízes de Plantas/química , Poluentes do Solo/análise
13.
Environ Pollut ; 266(Pt 3): 115235, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32707356

RESUMO

The radial transport of cadmium (Cd) is essential for Cd influx in roots. The role of radial transport pathway on the Cd translocation from root to shoot among wheat genotypes are still poorly understood. This study explored the role of apoplastic and symplastic pathway on root Cd uptake and root-to-shoot translocation in Zhenmai 10 (ZM10, high Cd in grains) and Aikang 58 (AK58, low Cd in grains). Under Cd treatment, the deposition of Casparian strips (CSs) and suberin lamellae (SL) initiated closer to the root apex in ZM10 than that in AK58, which resulted in the lower Cd concentration in apoplastic fluid of ZM10. Simultaneously, Cd-induced expression levels of genes related to Cd uptake in roots were significantly higher in AK58 by contrast with ZM10, contributing to the symplastic Cd accumulation in AK58 root. Moreover, the addition of metabolic inhibitor CCCP noticeably decreased the Cd accumulation in root of both genotypes. Intriguingly, compared to ZM10, greater amounts of Cd were sequestrated in the cell walls and vacuoles in roots of AK58, limiting the translocation of Cd from root to shoot. Furthermore, the elevated TaHMA2 expression in ZM10 indicates that ZM10 had a higher capacity of xylem loading Cd than AK58. All of these results herein suggest that the radial transport is significant for Cd accumulation in roots, but it cannot explain the difference in root-to-shoot translocation of Cd in wheat genotypes with contrast Cd accumulation in grains.


Assuntos
Cádmio , Triticum , Transporte Biológico , Genótipo , Raízes de Plantas , Plântula
14.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216620

RESUMO

Salicylic acid (SA), as an enigmatic signalling molecule in plants, has been intensively studied to elucidate its role in defence against biotic and abiotic stresses. This review focuses on recent research on the role of the SA signalling pathway in regulating cadmium (Cd) tolerance in plants under various SA exposure methods, including pre-soaking, hydroponic exposure, and spraying. Pretreatment with appropriate levels of SA showed a mitigating effect on Cd damage, whereas an excessive dose of exogenous SA aggravated the toxic effects of Cd. SA signalling mechanisms are mainly associated with modification of reactive oxygen species (ROS) levels in plant tissues. Then, ROS, as second messengers, regulate a series of physiological and genetic adaptive responses, including remodelling cell wall construction, balancing the uptake of Cd and other ions, refining the antioxidant defence system, and regulating photosynthesis, glutathione synthesis and senescence. These findings together elucidate the expanding role of SA in phytotoxicology.


Assuntos
Cádmio/toxicidade , Resistência à Doença , Doenças das Plantas/etiologia , Plantas/efeitos dos fármacos , Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Adaptação Biológica , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cádmio/metabolismo , Fotossíntese/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Estresse Fisiológico
15.
Plant Cell Environ ; 42(5): 1425-1440, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30577078

RESUMO

Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up-regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel-to-CSs overlap was identified as an ABA-driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin-related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion-selected electrode technique and PTS tracer confirmed that ABA-promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/genética , Sedum/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Sedum/genética
16.
Environ Sci Pollut Res Int ; 25(22): 21844-21854, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29796886

RESUMO

Inoculation with endophytic bacterium has been considered as a prospective application to improve the efficiency of phytoextraction. In this study, the effect of Buttiauxella sp. SaSR13 (SaSR13), a novel endophytic bacterium isolated from the root of hyperaccumulator Sedum alfredii, on plant growth and cadmium (Cd) accumulation in S. alfredii was investigated. Laser scanning confocal microscopic (LSCM) images showed that SaSR13 was mainly colonized in the root elongation and mature zones. The inoculation with SaSR13 to Cd-treated plants significantly enhanced plant growth (by 39 and 42% for shoot and root biomass, respectively), chlorophyll contents (by 38%), and Cd concentration in the shoot and root (by 32 and 22%, respectively). SaSR13 stimulated the development of roots (increased root length, surface area, and root tips number) due to an increase in the indole-3-acid (IAA) concentrations and a decrease in the concentrations of superoxide anion (O2.-) in plants grown under Cd stress. Furthermore, inoculation with SaSR13 enhanced the release of root exudates, especially malic acid and oxalic acid, which might have facilitated the uptake of Cd by S. alfredii. It is suggested that inoculation with endophytic bacterium SaSR13 is a promising bioaugmentation method to enhance the Cd phytoextraction efficiency by S. alfredii.


Assuntos
Cádmio/farmacocinética , Enterobacteriaceae/fisiologia , Sedum/metabolismo , Sedum/microbiologia , Poluentes do Solo/farmacocinética , Biodegradação Ambiental , Biomassa , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Exsudatos de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Estudos Prospectivos , Sedum/efeitos dos fármacos
17.
PLoS One ; 11(12): e0168163, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27973585

RESUMO

Slag-based silicate fertilizer has been widely used to improve soil silicon- availability and crop productivity. A consecutive early rice-late rice rotation experiment was conducted to test the impacts of steel slag on soil pH, silicon availability, rice growth and metals-immobilization in paddy soil. Our results show that application of slag at a rate above higher or equal to 1 600 mg plant-available SiO2 per kg soil increased soil pH, dry weight of rice straw and grain, plant-available Si concentration and Si concentration in rice shoots compared with the control treatment. No significant accumulation of total cadmium (Cd) and lead (Pb) was noted in soil; rather, the exchangeable fraction of Cd significantly decreased. The cadmium concentrations in rice grains decreased significantly compared with the control treatment. In conclusion, application of steel slag reduced soil acidity, increased plant-availability of silicon, promoted rice growth and inhibited Cd transport to rice grain in the soil-plant system.


Assuntos
Fertilizantes , Silicatos/química , Silício/química , Solo/química , Aço/química , Cádmio/química , Cádmio/metabolismo , Concentração de Íons de Hidrogênio , Chumbo/química , Metais/química , Metais Pesados/química , Oryza , Dióxido de Silício/química , Poluentes do Solo/análise
18.
Environ Sci Pollut Res Int ; 23(23): 23638-23647, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27614652

RESUMO

Steel slag has been widely used as amendment and silicon fertilizer to alleviate the mobility and bioavailability of heavy metals in soil. The objective of this study was to evaluate the influence of particle size, composition, and application rate of slag on metal immobilization in acidic soil, metals uptake by rice and rice growth. The results indicated that application of slag increased soil pH, plant-available silicon concentrations in soil, and decreased the bioavailability of metals compared with control treatment, whereas pulverous slag (S1) was more effective than granular slag (S2 and S3). The acid-extractable fraction of Cd in the spiked soil was significantly decreased with application of S1 at rates of 1 and 3 %, acid-extractable fractions of Cu and Zn were decreased when treated at 3 %. Use of S1 at both rates resulted in significantly lower Cd, Cu, and Zn concentrations in rice tissues than in controls by 82.6-92.9, 88.4-95.6, and 67.4-81.4 %, respectively. However, use of pulverous slag at 1 % significantly promotes rice growth, restricted rice growth when treated at 3 %. Thus, the results explained that reduced particle size and suitable application rate of slag could be beneficial to rice growth and metals stabilization.


Assuntos
Agricultura/instrumentação , Fertilizantes , Metais Pesados/análise , Silício , Solo/química , Aço , Disponibilidade Biológica , Metais Pesados/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
19.
Sci Rep ; 6: 24640, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27091552

RESUMO

Here we report for the first time that bacterial blight of rice can be alleviated by silicon (Si) added. In both inoculated and uninoculated plants, shoot dry weight was significantly higher in the +Si plants than in the -Si plants. A soil-cultured trial showed that disease severity was 24.3% lower in the Si-amended plants than in the non-Si-amended plants. Plants that were switched from -Si to +Si nutrient solution and simultaneously inoculated with Xoo also exhibited the same high resistance to bacterial blight as the plants that were treated continuously with Si, with control efficiencies of 52.8 and 62.9%, respectively. Moreover, total concentrations of soluble phenolics and lignin in rice leaves were significantly higher in the +Si plants than in the -Si plants. Polyphenoloxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities in rice leaves were observed to be higher in the +Si plants than in the -Si plants. The expression levels of Os03g0109600, Prla, Rcht2 and Lox2osPil, were also higher in +Si plants than in -Si plants post-inoculation during the experimental time. Addition of Si resulted in increased Pal transcription, and inhibited CatA and Os03g0126000 expression in the earlier and later stages of bacterial inoculation, respectively.


Assuntos
Resistência a Medicamentos/efeitos dos fármacos , Oryza/microbiologia , Silício/farmacologia , Oligoelementos/farmacologia , Catalase/metabolismo , Catecol Oxidase/metabolismo , Lignina/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Silício/metabolismo , Oligoelementos/metabolismo , Xanthomonas/patogenicidade
20.
J Hazard Mater ; 291: 120-8, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-25771217

RESUMO

The foliar uptake and transport of formaldehyde into Bracket plants from air via leaves and roots to external water was investigated in an air-plant-water system. The results indicated that formaldehyde could be quickly taken up by plant tissues, and that formaldehyde accumulated in leaves could be released rapidly back into air when the formaldehyde level in air was diminished. This rapid reversible translocation of formaldehyde between plant leaves and air resulted in high formaldehyde concentrations in leaf dews, depending upon exposure levels of formaldehyde in air. Meanwhile, formaldehyde could be transported from air to plant rhizosphere solution through downward transport. The concentration of formaldehyde in rhizosphere solutions increased with exposure time and the formaldehyde level in air. The efficiency of the leaf extracts to break down formaldehyde increased, probably because of an increase in oxidative potential of the leaf extracts. Taken together, the main mechanism of formaldehyde loss in air can be attributed to the accumulation by (or breakdown in) plant tissues; the removal rate of formaldehyde from air reached 135 µg h(-1) plant(-1) in the experimental condition.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Formaldeído/isolamento & purificação , Formaldeído/metabolismo , Liliaceae/metabolismo , Folhas de Planta/metabolismo , Transporte Biológico , Oxirredução , Extratos Vegetais/química , Rizosfera , Plântula/metabolismo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA