Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(29): e202404142, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38715431

RESUMO

Fluorescent imaging and biosensing in the near-infrared-II (NIR-II) window holds great promise for non-invasive, radiation-free, and rapid-response clinical diagnosis. However, it's still challenging to develop bright NIR-II fluorophores. In this study, we report a new strategy to enhance the brightness of NIR-II aggregation-induced emission (AIE) fluorophores through intramolecular electrostatic locking. By introducing sulfur atoms into the side chains of the thiophene bridge in TSEH molecule, the molecular motion of the conjugated backbone can be locked through intramolecular interactions between the sulfur and nitrogen atoms. This leads to enhanced NIR-II fluorescent emission of TSEH in both solution and aggregation states. Notably, the encapsulated nanoparticles (NPs) of TSEH show enhanced brightness, which is 2.6-fold higher than TEH NPs with alkyl side chains. The in vivo experiments reveal the feasibility of TSEH NPs in vascular and tumor imaging with a high signal-to-background ratio and precise resection for tiny tumors. In addition, polystyrene nanospheres encapsulated with TSEH are utilized for antigen detection in lateral flow assays, showing a signal-to-noise ratio 1.9-fold higher than the TEH counterpart in detecting low-concentration antigens. This work highlights the potential for developing bright NIR-II fluorophores through intramolecular electrostatic locking and their potential applications in clinical diagnosis and biomedical research.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Imagem Óptica , Eletricidade Estática , Corantes Fluorescentes/química , Humanos , Nanopartículas/química , Tiofenos/química , Animais , Camundongos , Estrutura Molecular
2.
Adv Mater ; 36(28): e2402182, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663035

RESUMO

Photosensitizers (PSs) with aggregation-induced emission (AIE) characteristics are competitive candidates for bioimaging and therapeutic applications. However, their short emission wavelength and nonspecific organelle targeting hinder their therapeutic effectiveness. Herein, a donor-acceptor modulation approach is reported to construct a series of ionic AIE photosensitizers with enhanced photodynamic therapy (PDT) outcomes and fluorescent emission in the second near-infrared (NIR-II) window. By employing dithieno[3,2-b:2',3'-d]pyrrole (DTP) and indolium (In) as the strong donor and acceptor, respectively, the compound DTP-In exhibits a substantial redshift in absorption and fluorescent emission reach to NIR-II region. The reduced energy gap between singlet and triplet states in DTP-In also increases the reactive oxygen species (ROS) generation rate. Further, DTP-In can self-assemble in aqueous solutions, forming positively charged nanoaggregates, which are superior to conventional encapsulated nanoparticles in cellular uptake and mitochondrial targeting. Consequently, DTP-In aggregates show efficient photodynamic ablation of 4T1 cancer cells and outstanding tumor theranostic in vivo under 660 nm laser irradiation. This work highlights the potential of molecular engineering of donor-acceptor AIE PSs with multiple functionalities, thereby facilitating the development of more effective strategies for cancer therapy.


Assuntos
Raios Infravermelhos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Indóis/química , Indóis/farmacologia , Nanopartículas/química , Pirróis/química , Pirróis/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38581443

RESUMO

PURPOSE: The accuracy of surgery for patients with solid tumors can be greatly improved through fluorescence-guided surgery (FGS). However, existing FGS technologies have limitations due to their low penetration depth and sensitivity/selectivity, which are particularly prevalent in the relatively short imaging window (< 900 nm). A solution to these issues is near-infrared-II (NIR-II) FGS, which benefits from low autofluorescence and scattering under the long imaging window (> 900 nm). However, the inherent self-assembly of organic dyes has led to high accumulation in main organs, resulting in significant background signals and potential long-term toxicity. METHODS: We rationalize the donor structure of donor-acceptor-donor-based dyes to control the self-assembly process to form an ultra-small dye nanocluster, thus facilitating renal excretion and minimizing background signals. RESULTS: Our dye nanocluster can not only show clear vessel imaging, tumor and tumor sentinel lymph nodes definition, but also achieve high-performance NIR-II imaging-guided surgery of tumor-positive sentinel lymph nodes. CONCLUSION: In summary, our study demonstrates that the dye nanocluster-based NIR-II FGS has substantially improved outcomes for radical lymphadenectomy.

4.
Small ; 19(43): e2302768, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37381638

RESUMO

The Li-CO2 battery has great potential for both CO2 utilization and energy storage, but its practical application is limited by low energy efficiency and short cycle life. Efficient cathode catalysts are needed to address this issue. Herein, this work reports on molecularly dispersed electrocatalysts (MDEs) of nickel phthalocyanine (NiPc) anchored on carbon nanotubes (CNTs) as the cathode catalyst for Li-CO2 batteries. The dispersed NiPc molecules efficiently catalyze CO2 reduction, while the conductive and porous CNTs networks facilitate CO2 evolution reaction, leading to enhanced discharging and charging performance compared to the NiPc and CNTs mixture. Octa-cyano substitution on NiPc (NiPc-CN) further enhances the interaction between the molecule and CNTs, resulting in better cycling stability. The Li-CO2 battery with the NiPc-CN MDE cathode shows a high discharge voltage of 2.72 V and a small discharging-charging potential gap of 1.4 V, and can work stably for over 120 cycles. The reversibility of the cathode is confirmed by experimental characterizations. This work lays a foundation for the development of molecular catalysts for Li-CO2 battery cathodes.

5.
Research (Wash D C) ; 6: 0039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040521

RESUMO

The second near-infrared (NIR-II, 1,000 to 1,700 nm) molecular fluorophores containing donor-acceptor-donor conjugated backbone have attracted substantial attention due to their outstanding advantages, such as stable emission and facilely tuned photophysical properties. However, it is still challenging for them to simultaneously achieve high brightness and red-shifted absorption and emission. Herein, furan is adopted as the D unit to construct NIR-II fluorophores, demonstrating red shift of absorption, enhanced absorption coefficient, and fluorescent quantum yield when compared with the generally used thiophene counterparts. The high brightness and desirable pharmacokinetics of the optimized fluorophore, IR-FFCHP, endows improved performance for angiography and tumor-targeting imaging. Furthermore, dual-NIR-II imaging of tumor and sentinel lymph nodes (LNs) has been achieved with IR-FFCHP and PbS/CdS quantum dots, enabling the in vivo imaging navigated LN surgery in tumor-bearing mice. This work demonstrates the potential of furan for constructing bright NIR-II fluorophores for biological imaging.

6.
Nano Lett ; 23(9): 4039-4048, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37071592

RESUMO

Radical lymphadenectomy remains the cornerstone of preventing tumor metastasis through the lymphatic system. Current surgical resection of lymph nodes (LNs) based on fluorescence-guided surgery (FGS) suffers from low sensitivity/selectivity with only qualitative information, hampering accurate intraoperative decision-making. Herein, we develop a modularized theranostic system including NIR-II FGS and a sandwiched plasmonic chip (SPC). Intraoperative NIR-II FGS and detection of tumor-positive lymph nodes were performed on the gastric tumor to determine the feasibility of the modularized theranostic system in defining LN metastasis. Under the NIR-II imaging window, the orthotopic tumor and sentinel lymph nodes (SLNs) were successfully excised without ambient light interference in the operating room. Importantly, the SPC biosensor achieved 100% sensitivity and 100% specificity for tumor markers and realized rapid and high-throughput intraoperative SLN detection. We propose the synergetic design of combining the NIR-II FGS and suitable biosensor will substantially improve the efficiency of cancer diagnosis and therapy follow-up.


Assuntos
Verde de Indocianina , Linfonodo Sentinela , Humanos , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Linfonodos/diagnóstico por imagem , Linfonodos/cirurgia , Linfonodos/patologia , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/cirurgia , Linfonodo Sentinela/patologia
7.
Small ; 19(17): e2206544, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710248

RESUMO

Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides a powerful tool for in vivo structural and functional imaging in deep tissue. However, the lack of biocompatible contrast agents with bright NIR-II emission has hindered its application in fundamental research and clinical trials. Herein, a liposome encapsulation strategy for generating ultrabright liposome-cyanine dyes by restricting dyes in the hydrophobic pockets of lipids and inhibiting the aggregation, as corroborated by computational modeling, is reported. Compared with free indocyanine green (ICG, an US Food and Drug Administration-approved cyanine dye), liposome-encapsulated ICG (S-Lipo-ICG) shows a 38.7-fold increase in NIR-II brightness and enables cerebrovascular imaging at only one-tenth dose over a long period (30 min). By adjusting the excitation wavelength, two liposome-encapsulated cyanine dyes (S-Lipo-ICG and S-Lipo-FD1080) enable NIR-II dual-color imaging. Moreover, small tumor nodules (2-5 mm) can be successfully distinguished and removed with S-Lipo-ICG image-guided tumor surgery in rabbit models. This liposome encapsulation maintains the metabolic pathway of ICG, promising for clinical implementation.


Assuntos
Corantes , Neoplasias , Animais , Coelhos , Corantes/química , Lipossomos , Verde de Indocianina/química , Meios de Contraste , Imagem Óptica/métodos , Corantes Fluorescentes
8.
Small Methods ; 7(1): e2201213, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36538738

RESUMO

Single-atom catalysts (SACs) are of interest for chemical transformations of significant energy and environmental relevance because of the envisioned efficient use of active sites and the flexibility in tuning their coordination environment. Future advancement in this vein hinges upon the ability to further increase the number and accessibility of active sites in addition to fine-tuning their chemical environment. In this work, a Ni SAC is reported with a unique hierarchical hollow structure (Ni/HH) that allows increased accessibility of the active sites. The successful obtainment of such a uniquely structured catalyst was enabled by the judiciously chosen solvent mixtures for the preparation of the precursor whose hierarchical feature is maintained during the subsequent pyrolysis and etching of the pyrolysis product. Comparative catalytic and mechanistic studies with reference to three closely related but more compact Ni SACs established the superior performance of Ni/HH for selective electroreduction of CO2 to CO. Experimental analyses by in situ attenuated total reflection surface-enhanced infrared spectroscopy reveal that it is the facilitated formation of the *COOH intermediate in the rate-determining step that leads to the enhanced reaction kinetics and the overall catalytic performance.

9.
Angew Chem Int Ed Engl ; 59(24): 9702-9710, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32159271

RESUMO

DNA nanotechnology plays an increasingly important role in the biomedical field; however, its application in the design of organic nanomaterials is underexplored. Herein, we report the use of DNA nanotechnology to transport a NIR-II-emitting nanofluorophore across the blood-brain barrier (BBB), facilitating non-invasive imaging of brain tumors. Specifically, the DNA block copolymer, PS-b-DNA, is synthesized through a solid-phase click reaction. We demonstrate that its self-assembled structure shows exceptional cluster effects, among which BBB-crossing is the most notable. Therefore, PS-b-DNA is utilized as an amphiphilic matrix to fabricate a NIR-II nanofluorephore, which is applied in in vivo bioimaging. Accordingly, the NIR-II fluorescence signal of the DNA-based nanofluorophore localized at a glioblastoma is 3.8-fold higher than the NIR-II fluorescence signal of the PEG-based counterpart. The notably increased imaging resolution will significantly benefit the further diagnosis and therapy of brain tumors.


Assuntos
Barreira Hematoencefálica/metabolismo , Corantes/metabolismo , DNA/química , DNA/metabolismo , Raios Infravermelhos , Transporte Biológico , Linhagem Celular , Humanos , Imagem Molecular
10.
Adv Mater ; 32(11): e1907365, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32022975

RESUMO

Tumor-lymph node (LN) metastasis is the dominant prognostic factor for tumor staging and therapeutic decision-making. However, concurrently visualizing metastasis and performing imaging-guided lymph node surgery is challenging. Here, a multiplexed-near-infrared-II (NIR-II) in vivo imaging system using nonoverlapping NIR-II probes with markedly suppressed photon scattering and zero-autofluorescence is reported, which enables visualization of the metastatic tumor and the tumor metastatic proximal LNs resection. A bright and tumor-seeking donor-acceptor-donor (D-A-D) dye, IR-FD, is screened for primary/metastatic tumor imaging in the NIR-IIa (1100-1300 nm) window. This optimized D-A-D dye exhibits greatly improved quantum yield of organic D-A-D fluorophores in aqueous solutions (≈6.0%) and good in vivo performance. Ultrabright PbS/CdS core/shell quantum dots (QDs) with dense polymer coating are used to visualize cancer-invaded sentinel LNs in the NIR-IIb (>1500 nm) window. Compared to clinically used indocyanine green, the QDs show superior brightness and photostability (no obvious bleaching even after continuous laser irradiation for 5 h); thus, only a picomolar dose is required for sentinel LNs detection. This combination of dual-NIR-II image-guided surgery can be performed under bright light, adding to its convenience and appeal in clinical use.


Assuntos
Corantes Fluorescentes/química , Metástase Linfática/diagnóstico por imagem , Imagem Óptica/métodos , Pontos Quânticos/química , Linfonodo Sentinela/diagnóstico por imagem , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Compostos de Cádmio/química , Linhagem Celular Tumoral , Feminino , Chumbo/química , Metástase Linfática/terapia , Camundongos , Polímeros/química , Compostos de Selênio/química , Linfonodo Sentinela/cirurgia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cirurgia Assistida por Computador/métodos
11.
Nano Res ; 12: 273-279, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832124

RESUMO

Theranostic nanoparticles are integrated systems useful for simultaneous diagnosis and imaging guided delivery of therapeutic drugs, with wide ranging potential applications in the clinic. Here we developed a theranostic nanoparticle (~ 24 nm size by dynamic light scattering) p-FE-PTX-FA based on polymeric micelle encapsulating an organic dye (FE) fluorescing in the 1,000-1,700 nm second near-infrared (NIR-II) window and an anti-cancer drug paclitaxel. Folic acid (FA) was conjugated to the nanoparticles to afford specific binding to molecular folate receptors on murine breast cancer 4T1 tumor cells. In vivo, the nanoparticles accumulated in 4T1 tumor through both passive and active targeting effect. Under an 808 nm laser excitation, fluorescence detection above 1,300 nm afforded a large Stokes shift, allowing targeted molecular imaging tumor with high signal to background ratios, reaching a high tumor to normal tissue signal ratio (T/NT) of (20.0 ± 2.3). Further, 4T1 tumors on mice were completed eradicated by paclitaxel released from p-FE-PTA-FA within 20 days of the first injection. Pharmacokinetics and histology studies indicated p-FE-PTX-FA had no obvious toxic side effects to major organs. This represented the first NIR-II theranostic agent developed.

12.
Nat Methods ; 16(6): 545-552, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086342

RESUMO

Non-invasive deep-tissue three-dimensional optical imaging of live mammals with high spatiotemporal resolution is challenging owing to light scattering. We developed near-infrared II (1,000-1,700 nm) light-sheet microscopy with excitation and emission of up to approximately 1,320 nm and 1,700 nm, respectively, for optical sectioning at a penetration depth of approximately 750 µm through live tissues without invasive surgery and at a depth of approximately 2 mm in glycerol-cleared brain tissues. Near-infrared II light-sheet microscopy in normal and oblique configurations enabled in vivo imaging of live mice through intact tissue, revealing abnormal blood flow and T-cell motion in tumor microcirculation and mapping out programmed-death ligand 1 and programmed cell death protein 1 in tumors with cellular resolution. Three-dimensional imaging through the intact mouse head resolved vascular channels between the skull and brain cortex, and allowed monitoring of recruitment of macrophages and microglia to the traumatic brain injury site.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico por imagem , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Encéfalo/irrigação sanguínea , Lesões Encefálicas Traumáticas/patologia , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/patologia , Feminino , Corantes Fluorescentes , Humanos , Imageamento Tridimensional , Raios Infravermelhos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Chem Sci ; 10(1): 326-332, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30713641

RESUMO

In vivo molecular imaging in the "transparent" near-infrared II (NIR-II) window has demonstrated impressive benefits in reaching millimeter penetration depths with high specificity and imaging quality. Previous NIR-II molecular imaging generally relied on high hepatic uptake fluorophores with an unclear mechanism and antibody-derived conjugates, suffering from inevitable nonspecific retention in the main organs/skin with a relatively low signal-to-background ratio. It is still challenging to synthesize a NIR-II fluorophore with both high quantum yield and minimal liver-retention feature. Herein, we identified the structural design and excretion mechanism of novel NIR-II fluorophores for NIR-II molecular imaging with an extremely clean background. With the optimized renally excreted fluorophore-peptide conjugates, superior NIR-II targeting imaging was accompanied by the improved signal-to-background ratio during tumor detection with reducing off-target tissue exposure. An unprecedented NIR-II imaging-guided microsurgery was achieved using such an imaging platform, which provides us with a great preclinical example to accelerate the potential clinical translation of NIR-II imaging.

14.
Adv Mater ; 30(22): e1800106, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29682821

RESUMO

In vivo molecular imaging of tumors targeting a specific cancer cell marker is a promising strategy for cancer diagnosis and imaging guided surgery and therapy. While targeted imaging often relies on antibody-modified probes, peptides can afford targeting probes with small sizes, high penetrating ability, and rapid excretion. Recently, in vivo fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) shows promise in reaching sub-centimeter depth with microscale resolution. Here, a novel peptide (named CP) conjugated NIR-II fluorescent probe is reported for molecular tumor imaging targeting a tumor stem cell biomarker CD133. The click chemistry derived peptide-dye (CP-IRT dye) probe afforded efficient in vivo tumor targeting in mice with a high tumor-to-normal tissue signal ratio (T/NT > 8). Importantly, the CP-IRT probes are rapidly renal excreted (≈87% excretion within 6 h), in stark contrast to accumulation in the liver for typical antibody-dye probes. Further, with NIR-II emitting CP-IRT probes, urethra of mice can be imaged fluorescently for the first time noninvasively through intact tissue. The NIR-II fluorescent, CD133 targeting imaging probes are potentially useful for human use in the clinic for cancer diagnosis and therapy.


Assuntos
Peptídeos/química , Animais , Linhagem Celular Tumoral , Química Click , Corantes Fluorescentes , Camundongos , Imagem Molecular , Espectroscopia de Luz Próxima ao Infravermelho
15.
Adv Sci (Weinh) ; 5(2): 1700644, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29619313

RESUMO

Molybdenum disulfide (MoS2)-based materials have been recently identified as promising electrocatalysts for hydrogen evolution reaction (HER). However, little work has been done to improve the catalytic performance of MoS2 toward HER in alkaline electrolytes, which is more suitable for water splitting in large-scale applications. Here, it is reported that the hybridization of 0D nickel hydr(oxy)oxide nanoparticles with 2D metallic MoS2 nanosheets can significantly enhance the HER activities in alkaline and neutral electrolytes. Impressively, the optimized hybrid catalyst can drive a cathodic current density of 10 mA cm-2 at an overpotential of ≈73 mV for HER in 1 m KOH, about 185 mV smaller than the original MoS2. The improved HER activity is attributed to a bifunctional mechanism adopted in these hybrid catalysts, in which nickel hydr(oxy)oxide promotes the water adsorption and dissociation to supply protons for subsequent reactions occurred on MoS2 to generate H2.

16.
Nat Commun ; 9(1): 1171, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563581

RESUMO

Fluorescence imaging of biological systems in the second near-infrared (NIR-II, 1000-1700 nm) window has shown promise of high spatial resolution, low background, and deep tissue penetration owing to low autofluorescence and suppressed scattering of long wavelength photons. Here we develop a bright organic nanofluorophore (named p-FE) for high-performance biological imaging in the NIR-II window. The bright NIR-II >1100 nm fluorescence emission from p-FE affords non-invasive in vivo tracking of blood flow in mouse brain vessels. Excitingly, p-FE enables one-photon based, three-dimensional (3D) confocal imaging of vasculatures in fixed mouse brain tissue with a layer-by-layer imaging depth up to ~1.3 mm and sub-10 µm high spatial resolution. We also perform in vivo two-color fluorescence imaging in the NIR-II window by utilizing p-FE as a vasculature imaging agent emitting between 1100 and 1300 nm and single-walled carbon nanotubes (CNTs) emitting above 1500 nm to highlight tumors in mice.


Assuntos
Encéfalo/diagnóstico por imagem , Corantes Fluorescentes/farmacocinética , Imageamento Tridimensional/métodos , Nanotubos de Carbono/química , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/fisiologia , Encéfalo/irrigação sanguínea , Linhagem Celular Tumoral , Circulação Cerebrovascular/fisiologia , Feminino , Corantes Fluorescentes/síntese química , Imageamento Tridimensional/instrumentação , Injeções Subcutâneas , Glândulas Mamárias Animais/irrigação sanguínea , Glândulas Mamárias Animais/diagnóstico por imagem , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Imagem Óptica/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação
17.
Adv Mater ; 30(13): e1705799, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29446156

RESUMO

Greatly reduced scattering in the second near-infrared (NIR-II) region (1000-1700 nm) opens up many new exciting avenues of bioimaging research, yet NIR-II fluorescence imaging is mostly implemented by using nontargeted fluorophores or wide-field imaging setups, limiting the signal-to-background ratio and imaging penetration depth due to poor specific binding and out-of-focus signals. A newly developed high-performance NIR-II bioconjugate enables targeted imaging of a specific organ in the living body with high quality. Combined with a home-built NIR-II confocal set-up, the enhanced imaging technique allows 900 µm-deep 3D organ imaging without tissue clearing techniques. Bioconjugation of two hormones to nonoverlapping NIR-II fluorophores facilitates two-color imaging of different receptors, demonstrating unprecedented multicolor live molecular imaging across the NIR-II window. This deep tissue imaging of specific receptors in live animals allows development of noninvasive molecular imaging of multifarious models of normal and neoplastic organs in vivo, beyond the traditional visible to NIR-I range. The developed NIR-II fluorescence microscopy will become a powerful imaging technique for deep tissue imaging without any physical sectioning or clearing treatment of the tissue.

18.
Adv Funct Mater ; 28(50)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31832053

RESUMO

Fluorescence imaging in the second near-infrared (NIR-II) window holds impressive advantages of enhanced penetration depth and improved signal-to-noise ratio. Bright NIR-II fluorophores with renal excretion ability and low tissue accumulation are favorable for in vivo molecular imaging applications as they can render the target-mediated molecular imaging process easily distinguishable. Here, a probe (anti-PD-L1-BGP6) comprising a fluorophore (IR-BGP6) covalently bonded to the programmed cell death ligand-1 monoclonal antibody (PD-L1 mAb) for molecular imaging of immune checkpoint PD-L1 (a targeting site upregulated in various tumors for cancer imaging) in the NIR-II window is reported. Through molecular optimization, the bright NIR-II fluorophore IR-BGP6 with fast renal excretion (≈91% excretion in general through urine within the first 10 h postinjection) is developed. The conjugate anti-PD-L1-BGP6 succeeds in profiling PD-L1 expression and realizes efficient noninvasive molecular imaging in vivo, achieving a tumor to normal tissue (T/NT) signal ratio as high as ≈9.5. Compared with the NIR-II fluorophore with high nonspecific tissue accumulation, IR-BGP6 derived PD-L1 imaging significantly enhances the molecular imaging performance, serving as a strong tool for potentially studying underlying mechanism of immunotherapy. The work provides rationales to design renal-excreted NIR-II fluorophores and illustrate their advantages for in vivo molecular imaging.

19.
Chem Sci ; 8(9): 6322-6326, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989666

RESUMO

A fluorescent dye, FEB, with high fluorescence quantum yield for tumour imaging is reported. FEB dyes can be efficiently synthesized in three steps and then easily modified with either PEG or PEG-iRGD to yield FEB-2000 or FEB-2000-iRGD, respectively. Both modified dyes showed negligible toxicity and were thus able to be adopted for in vivo tumour imaging. PEG modification endowed the dye FEB-2000 with both long circulating times and good tumour targeting properties in a MDA-MB-231 xenograft model. Further conjugation with iRGD to generate FEB-2000-iRGD showed minimal targeting enhancement. These results provide a template for the efficient preparation of FEB dyes for use in tumour imaging, thus providing a foundation for future modifications.

20.
Theranostics ; 7(5): 1133-1148, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435453

RESUMO

Since the successful exfoliation of graphene from graphite in 2004, graphene and graphene oxide (GO) have been considered the most promising two-dimensional (2D) nanomaterials with distinguished physical and chemical characteristics and have attracted great attention in many different fields. Graphene oxide is well-known for its distinct physiochemical properties and shows only minimal cytotoxicity compared to carbon nanotubes. Until now, only limited efforts have been invested in utilizing GO for gene therapy in pancreatic cancer treatments. In this study, we utilized multi-functionalized monolayer GO as a gene delivery system to efficiently co-deliver HDAC1 and K-Ras siRNAs (small interfering RNAs targeting the HDAC1 gene and the G12C mutant K-Ras gene, respectively) to specifically target pancreatic cancer cells MIA PaCa-2. The systematic mechanistic elucidation of the dual gene silencing effects indicated the inactivation of both the HDAC1 and the K-Ras gene, thereby causing apoptosis, proliferation inhibition and cell cycle arrest in treated MIA PaCa-2 cells. The synergistic combination of gene silencing and NIR light thermotherapy showed significant anticancer efficacy, inhibiting in vivo tumor volume growth by >80%. Furthermore, GO can be metabolized in the mouse model within a reasonable period of time without obvious side effects. Based on preliminary in vivo application, this study for the first time indicates the promising potential of functionalized GO as a vehicle for gene therapy delivery with low toxicity for the treatment of pancreatic adenocarcinoma.


Assuntos
Produtos Biológicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Grafite/administração & dosagem , Nanoestruturas/administração & dosagem , Óxidos/administração & dosagem , Neoplasias Pancreáticas/terapia , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Células Epiteliais/efeitos da radiação , Terapia Genética/métodos , Histona Desacetilase 1/antagonistas & inibidores , Hipertermia Induzida/métodos , Raios Infravermelhos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA