Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38581330

RESUMO

Objective: Metabolism, a basic need and biochemical process for cell survival and proliferation, is closely connected with the pathogenesis and progression of prostate cancer. Methods: A four-gene signature construct that includes CKM (CKM), CD38, Enoyl Coenzyme A(EHHADH), and Arginase 2(ARG2) was created by bioinformatics. Finally, hub genes were validated by IHC and in vitro experiments. Results: The results showed the AUCs of the logistic regression and neural networks diagnostic model for the diagnosis of two subtypes were 0.920 and 0.936, respectively. The risk score demonstrated by univariable and multivariable Cox analysis is an independent predictive component of the prognostic signature for DFS. According to immunohistochemical analyses, ARG2 and CD38 expression levels were considerably under-expressed, but CKM and EHHADH expression levels were significantly overexpressed. Furthermore, The expression of ARG2 was significantly down-regulated in the late Gleason score. Finally, we found that ARG2 is lowly expressed in prostate cancer cells. Furthermore, based on the effect of ARG2 on the malignant phenotype of PCa in vitro, we also found that ARG2 may be a tumor suppressor that plays an important role in inhibiting proliferation, migration, and invasion. Conclusions: These findings suggest that ARG2 has been tentatively identified as a new target for research into how PCa develops in metabolism and for the development of innovative targeted treatments.

2.
Front Neurosci ; 18: 1293400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650623

RESUMO

Background: Neural tube defects (NTDs) is the most common birth defect of the central nervous system (CNS) which causes the death of almost 88,000 people every year around the world. Much efforts have been made to investigate the reasons that contribute to NTD and explore new ways to for prevention. We trawl the past decade (2013-2022) published records in order to get a worldwide view about NTDs research field. Methods: 7,437 records about NTDs were retrieved from the Web of Science (WOS) database. Tools such as shell scripts, VOSviewer, SCImago Graphica, CiteSpace and PubTator were used for data analysis and visualization. Results: Over the past decade, the number of publications has maintained an upward trend, except for 2022. The United States is the country with the highest number of publications and also with the closest collaboration with other countries. Baylor College of Medicine has the closest collaboration with other institutions worldwide and also was the most prolific institution. In the field of NTDs, research focuses on molecular mechanisms such as genes and signaling pathways related to folate metabolism, neurogenic diseases caused by neural tube closure disorders such as myelomeningocele and spina bifida, and prevention and treatment such as folate supplementation and surgical procedures. Most NTDs related genes are related to development, cell projection parts, and molecular binding. These genes are mainly concentrated in cancer, Wnt, MAPK, PI3K-Akt and other signaling pathways. The distribution of NTDs related SNPs on chromosomes 1, 3, 5, 11, 14, and 17 are relatively concentrated, which may be associated with high-risk of NTDs. Conclusion: Bibliometric analysis of the literature on NTDs field provided the current status, hotspots and future directions to some extant. Further bioinformatics analysis expanded our understanding of NTDs-related genes function and revealed some important SNP clusters and loci. This study provided some guidance for further studies. More extensive cooperation and further research are needed to overcome the ongoing challenge in pathogenesis, prevention and treatment of NTDs.

3.
Adv Healthc Mater ; 13(13): e2303674, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38315148

RESUMO

Intrauterine adhesion (IUA) stands as a prevalent medical condition characterized by endometrial fibrosis and scar tissue formation within the uterine cavity, resulting in infertility and, in severe cases, recurrent miscarriages. Cell therapy, especially with stem cells, offers an alternative to surgery, but concerns about uncontrolled differentiation and tumorigenicity limit its use. Exosomes, more stable and immunogenicity-reduced than parent cells, have emerged as a promising avenue for IUA treatment. In this study, a novel approach has been proposed wherein exosomes originating from decidual stromal cells (DSCs) are encapsulated within sodium alginate hydrogel (SAH) scaffolds to repair endometrial damage and restore fertility in a mouse IUA model. Current results demonstrate that in situ injection of DSC-derived exosomes (DSC-exos)/SAH into the uterine cavity has the capability to induce uterine angiogenesis, initiate mesenchymal-to-epithelial transformation (MET), facilitate collagen fiber remodeling and dissolution, promote endometrial regeneration, enhance endometrial receptivity, and contribute to the recovery of fertility. RNA sequencing and advanced bioinformatics analysis reveal miRNA enrichment in exosomes, potentially supporting endometrial repair. This finding elucidates how DSC-exos/SAH mechanistically fosters collagen ablation, endometrium regeneration, and fertility recovery, holding the potential to introduce a novel IUA treatment and offering invaluable insights into the realm of regenerative medicine.


Assuntos
Alginatos , Endométrio , Exossomos , Hidrogéis , Regeneração , Células Estromais , Feminino , Alginatos/química , Exossomos/metabolismo , Exossomos/química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Endométrio/citologia , Endométrio/metabolismo , Camundongos , Regeneração/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/citologia , Decídua/citologia , Decídua/metabolismo , Fertilidade/fisiologia , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Aderências Teciduais/metabolismo
4.
Cell Death Dis ; 15(1): 64, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233415

RESUMO

Renal cell carcinoma (RCC) is one of the three major malignant tumors of the urinary system and originates from proximal tubular epithelial cells. Clear cell renal cell carcinoma (ccRCC) accounts for approximately 80% of RCC cases and is recognized as a metabolic disease driven by genetic mutations and epigenetic alterations. Through bioinformatic analysis, we found that FK506 binding protein 10 (FKBP10) may play an essential role in hypoxia and glycolysis pathways in ccRCC progression. Functionally, FKBP10 promotes the proliferation and metastasis of ccRCC in vivo and in vitro depending on its peptidyl-prolyl cis-trans isomerase (PPIase) domains. Mechanistically, FKBP10 binds directly to lactate dehydrogenase A (LDHA) through its C-terminal region, the key regulator of glycolysis, and enhances the LDHA-Y10 phosphorylation, which results in a hyperactive Warburg effect and the accumulation of histone lactylation. Moreover, HIFα negatively regulates the expression of FKBP10, and inhibition of FKBP10 enhances the antitumor effect of the HIF2α inhibitor PT2385. Therefore, our study demonstrates that FKBP10 promotes clear cell renal cell carcinoma progression and regulates sensitivity to HIF2α blockade by facilitating LDHA phosphorylation, which may be exploited for anticancer therapy.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Lactato Desidrogenase 5/metabolismo , Fosforilação , Linhagem Celular Tumoral , Carcinoma/genética , Neoplasias Renais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
5.
Adv Healthc Mater ; 13(10): e2304207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175149

RESUMO

Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates H2O2-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.


Assuntos
Quitosana , Exossomos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Polímeros/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Pirróis , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Preparações de Ação Retardada/farmacologia , Peróxido de Hidrogênio/metabolismo , Infarto do Miocárdio/terapia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Miócitos Cardíacos/metabolismo
6.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 280-290, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273781

RESUMO

Acute liver failure (ALF) is a significant global issue with elevated morbidity and mortality rates. There is an urgent and pressing need for secure and effective treatments. Ferroptosis, a novel iron-dependent regulation of cell death, plays a significant role in multiple pathological processes associated with liver diseases, including ALF. Several studies have demonstrated that mesenchymal stem cells (MSCs) have promising therapeutic potential in the treatment of ALF. This study aims to investigate the positive effects of MSCs against ferroptosis in an ALF model and explore the underlying molecular mechanisms of their therapeutic function. Our results show that intravenously injected MSCs protect against ferroptosis in ALF mouse models. MSCs decrease iron deposition in the liver of ALF mice by downregulating hepcidin level and upregulating FPN1 level. MSCs labelled with Dil are mainly observed in the hepatic sinusoid and exhibit colocalization with the macrophage marker CD11b fluorescence. ELISA demonstrates a high level of IGF1 in the CCL 4+MSC group. Suppressing the IGF1 effect by the PPP blocks the therapeutic effect of MSCs against ferroptosis in ALF mice. Furthermore, disruption of IGF1 function results in iron deposition in the liver tissue due to impaired inhibitory effects of MSCs on hepcidin level. Our findings suggest that MSCs alleviate ferroptosis induced by disorders of iron metabolism in ALF mice by elevating IGF1 level. Moreover, MSCs are identified as a promising cell source for ferroptosis treatment in ALF mice.


Assuntos
Ferroptose , Falência Hepática Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Hepcidinas/efeitos adversos , Hepcidinas/metabolismo , Falência Hepática Aguda/terapia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Transplante de Células-Tronco Mesenquimais/métodos , Fator de Crescimento Insulin-Like I/metabolismo
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 23-33, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38062774

RESUMO

Neural tube defects (NTDs) represent a developmental disorder of the nervous system that can lead to significant disability in children and impose substantial social burdens. Valproic acid (VPA), a widely prescribed first-line antiepileptic drug for epilepsy and various neurological conditions, has been associated with a 4-fold increase in the risk of NTDs when used during pregnancy. Consequently, urgent efforts are required to identify innovative prevention and treatment approaches for VPA-induced NTDs. Studies have demonstrated that the disruption in the delicate balance between cell proliferation and apoptosis is a crucial factor contributing to NTDs induced by VPA. Encouragingly, our current data reveal that melatonin (MT) significantly inhibits apoptosis while promoting the restoration of neuroepithelial cell proliferation impaired by VPA. Moreover, further investigations demonstrate that MT substantially reduces the incidence of neural tube malformations resulted from VPA exposure, primarily by suppressing apoptosis through the modulation of intracellular reactive oxygen species levels. In addition, the Src/PI3K/ERK signaling pathway appears to play a pivotal role in VPA-induced NTDs, with significant inhibition observed in the affected samples. Notably, MT treatment successfully reinstates Src/PI3K/ERK signaling, thereby offering a potential underlying mechanism for the protective effects of MT against VPA-induced NTDs. In summary, our current study substantiates the considerable protective potential of MT in mitigating VPA-triggered NTDs, thereby offering valuable strategies for the clinical management of VPA-related birth defects.


Assuntos
Melatonina , Defeitos do Tubo Neural , Gravidez , Feminino , Criança , Humanos , Ácido Valproico , Melatonina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/prevenção & controle , Estresse Oxidativo , Transdução de Sinais
8.
Adv Ophthalmol Pract Res ; 3(2): 47-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37846375

RESUMO

Background: Artesunate (ART), a member of the artemisinin family, possesses multi-properties, including anti-inflammation, anti-oxidation, and anti-tumor. ART was recently reported to show anti-neovascularization effect on the cornea, iris, and retina. Compared to the expensive anti-VEGF treatment, this versatile, economical treatment option is attractive in the ophthalmic field. The safety and toxicity profile of ART intravitreal application are in utmost need. Methods: In this study, immortalized microglial (IMG) cells were treated with ART to determine the safe concentrations without inducing overt inflammatory reactions. Reverse transcription-polymerase chain reaction analysis was used to detect the cytokine expressions in IMG cells in response to ART stimulation. Various doses of ART were intravitreally injected into the right eyes of C57BL/6 mice. Retinal function was tested by electroretinogram, and retinal ganglion cell (RGC) survival was evaluated by counting Brn3a stained cells in flat-mounted retinas at 7 days after ART injection. Results: ART below 5µM was safe for IMG cells in vitro. Both 2.5 and 5 â€‹µM ART treatment increased IL-10 gene expression in IMG cells while not changing IL-1ß, IL-6, TNF-α, and Arg-1. In the in vivo study, intravitreal injection of ART below 100 â€‹µM did not cause deterioration in the retinal function and RGC survival of the mouse eyes, while 1 â€‹mM ART treatment significantly attenuated both the scotopic and photopic b-wave amplitudes and impaired RGC survival. In addition, treatment with ART of 25, 50, and 100 â€‹µM significantly decreased TNF-α gene expression while ART of 100 â€‹µM significantly increased IL-10 in the mouse retina. Conclusions: Intravitreal injection of 100 â€‹µM ART could downregulate TNF-α while upregulate IL-10 in the mouse retina without causing retinal functional deterioration and RGC loss. ART might be used as anti-inflammatory agent for retinal disorders.

9.
Int J Biol Macromol ; 253(Pt 6): 127314, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827397

RESUMO

A thinner endometrium has been linked to implantation failure, and various therapeutic strategies have been attempted to improve endometrial regeneration, including the use of mesenchymal stem cells (MSCs). However, low survival and retention rates of transplanted stem cells are main obstacles to efficient stem cell therapy in thin endometrium. Collagen type III is a key component of the extracellular matrix, plays a crucial role in promoting cell proliferation and differentiation, and has been identified as the major collagen expressed at the implantation site. Herein, composite alginate hydrogel containing recombinant type III collagen (rCo III) and umbilical cord mesenchymal stem cells are developed. rCo III serves as favorable bioactive molecule, displaying that rCo III administration promotes MSCs proliferation, stemness maintenance and migration. Moreover, rCo III administration enhances cell viability and migration of mouse endometrial stromal cells (ESCs). In a mouse model of thin endometrium, the Alg-rCo III hydrogel loaded with MSCs (MSC/Alg-rCo III) significantly induces endometrial regeneration and fertility enhancement in vivo. Further studies demonstrate that the MSC/Alg-rCo III hydrogel promoted endometrial function recovery partly by regulating mesenchymal-epithelial transition of ESCs. Taken together, the combination of Alg-rCo III hydrogel and MSCs has shown promising results in promoting endometrium regeneration and fertility restoration, and may provide new therapeutic options for endometrial disease.


Assuntos
Colágeno Tipo III , Células-Tronco Mesenquimais , Feminino , Camundongos , Animais , Colágeno Tipo III/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Alginatos/farmacologia , Alginatos/metabolismo , Endométrio , Fertilidade/fisiologia
10.
Front Immunol ; 14: 1108213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033991

RESUMO

Background: The neoadjuvant use of immune checkpoint inhibitor combined with chemotherapy (nICT) or chemoradiotherapy (nICRT) in locally advanced esophageal cancer (EC) is currently an area of active ongoing research. Therefore, we carried out a comprehensive meta-analysis to compare the efficacy and safety of the new strategy with routine neoadjuvant strategy, which included neoadjuvant chemotherapy (nCT) and neoadjuvant chemoradiotherapy (nCRT). Patients and methods: MEDLINE (via PubMed), Embase (via OVID), ISI Web of Science database and Cochrane Library were included. And, all of them were searched for eligible studies between January, 2000 and February, 2023. The pathological complete response (pCR) and major pathological response (MPR) were primary outcome of our study. The second outcome of interest was R0 resection rate. Odds ratio (OR) and associated 95% CI were used as the effect indicators comparing the safety and efficiency of the neoadjuvant immunotherapy with the routine neoadjuvant therapy. Fixed-effect model (Inverse Variance) or random-effect model (Mantel-Haenszel method) was performed depending on the statistically heterogeneity. Results: There were eight trials with 652 patients were included in our meta-analysis. The estimated pCR rate was higher in the neoadjuvant immunotherapy group (OR =1.86; 95% CI, 1.25-2.75; I2 = 32.8%, P=0.166). The different results were found in the esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) subgroups, the estimated OR was 2.35 (95%CI, 1.00-2.72; I2 = 30.9%, P=0.215) in the EAC subgroup, and 2.35 (95% CI, 1.20-4.54; I2 = 45.3%, P=0.161) in the ESCC subgroup, respectively. The neoadjuvant immunotherapy also showed the advantage in the MPR rates (OR =2.66; 95% CI, 1.69-4.19; I2 = 24.3%, P=0.252). There was no obvious difference between the neoadjuvant immunotherapy and routine neoadjuvant therapy with respect to surgical resection rate, R0 resection rate, surgical delay rate; while more treatment-related adverse events were observed for the neoadjuvant immunotherapy for pneumonitis/pneumonia (OR=3.46, 95% CI, 1.31-9.16; I2 = 67.3%, P=0.005) and thyroid dysfunction (OR=4.69, 95% CI, 1.53-14.36; I2 = 56.5%, P=0.032). Conclusion: The pooled correlations indicated that the neoadjuvant immunotherapy (both nICT and nICRT) could significantly increase the rates of pCR and MPR, compared with routine neoadjuvant therapy (both nCT and nCRT) in the treatment of locally advanced EC. The neoadjuvant immunotherapy and routine neoadjuvant therapy were with acceptable toxicity. However, randomized studies with larger groups of patients need to performed to confirm these results. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020155802.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Terapia Neoadjuvante/métodos , Carcinoma de Células Escamosas do Esôfago/terapia , Imunoterapia/efeitos adversos
13.
FEBS Open Bio ; 12(11): 2083-2095, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106411

RESUMO

Myosin phosphatase target subunit 1 (MYPT1) is a subunit of myosin phosphatase that is capable of regulating smooth muscle contraction. MYPT1 has been reported to be involved in a wide variety of tumours, but its expression and biological functions in renal clear cell carcinoma (ccRCC) remain obscure. Herein, we analysed the relationship between patient clinicopathological characteristics and MYPT1 expression levels in ccRCC patients using a tissue microarray (TMA) and data retrieved from the TCGA-KIRC dataset. MYPT1 was overexpressed or depleted using siRNA in ccRCC cells to assess the effects on migration and invasion in vitro and in vivo. Additionally, RNA-sequencing and bioinformatics analysis were performed to investigate the precise mechanism. MYPT1 expression in ccRCC tissues was observed to be lower than that in nonmalignant tissues (P < 0.05). In addition, MYPT1 downregulation was closely linked to advanced pathological stage (P < 0.05), and poor OS (overall survival; P < 0.05). Functionally, increased expression of MYPT1 suppressed ccRCC migration and invasion in vitro, and inhibited tumour metastasis in vivo. In addition, MYPT1 overexpression exerted its suppressive effects via the MAPK8/N-cadherin pathway in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Caderinas/genética , Carcinoma de Células Renais/metabolismo , Movimento Celular/genética , Neoplasias Renais/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo
14.
Transl Androl Urol ; 11(7): 914-928, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958903

RESUMO

Background: Even though emerging studies supplied evidence that Adhesion Molecule with Ig Like Domain family 2 (AMIGO2) plays a critical role in numerous cancers, comprehensive analysis of the prognostic value and significant role of AMIGO2 in prostate cancer (PCa) have not been described. Methods: Differentially expressed analysis, survival analysis and univariate cox regression analysis were first performed to explore the diagnostic and prognostic role of AMIGO2 in various cancers, especially in PCa. Tissue microarray were used to examined the association between AMGIO2 and clinical features. Multivariate cox regression analysis, concordance index, nomogram construction, the receiver operator characteristic curve and calibration curves were further used to discover the effects of AMIGO2 on recurrence-free survival (RFS) and clinicopathological characteristics, including age, Gleason score (GS) and tumor stage. Genetic and Epigenetic Alterations analysis were further conducted to explore the potential effect of AMIGO2 in PCa and examined by biological function analysis and in vitro experiments. Results: AMIGO2 was associated with poor RFS (P<0.05) and differentially expressed (P<0.05) in multiple cancer type, especially in PCa. Besides, decreasing the expression of AMIGO2 inhibited PCa cell proliferation and colony formation in vitro. In addition, AMIGO2 was a reliable prognostic marker providing additional information (C-index: 0.7) that supplement the currently used prognosis evaluation system, e.g., T stage (C-index: 0.62) and GS (C-index: 0.65). A novel nomogram was established based on AMIGO2, tumor stage and GS with accuracies (areas under curve) of 0.70, 0.78 and 0.82 for predicting 3-, 5- and 7-year RFS, respectively. Bioinformatic analysis and in vitro examination also suggested that AMIGO2 might involve in the progression of PCa tumors inducing epithelial mesenchymal transition (EMT). Conclusions: We identified AMIGO2 as a pan-cancer gene that could not only be a prognostic biomarker in various cancers, especially in PCa, but may functionally promoting PCa progression via EMT and mediating docetaxel resistance, suggesting AMIGO2 as a potential target for future treatment of PCa.

15.
BMJ Open ; 12(6): e055420, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738656

RESUMO

INTRODUCTION: Obesity is a public health challenge worldwide. To maintain a healthy weight, dieting and lifestyle changes are the first-line interventions; however, these interventions are of poor compliance and may cause body composition changes, mainly skeletal muscle wasting (sarcopenia). Dietary supplements for improving body composition while inducing weight loss are therefore needed. ß-hydroxy-ß-methylbutyrate (HMB) has been proven to be effective for improving muscle mass and muscle strength in athletes, older adults and patients with cancer. We aim to evaluate the effectiveness and safety of HMB-enriched nutritional supplements for improving muscle mass and muscle function in obese adults during calorie restriction. METHOD AND ANALYSIS: A total of 72 Chinese adults with obesity will be randomised to receive HMB-enriched nutritional supplements (65 g/day) or a placebo for 12 weeks. Participants in both groups will also receive calorie restrictions based on the individualised nutrition guidance of dietitians. Participants and investigators will be blinded to the allocations. The primary outcome will be the mean change in whole-body skeletal muscle mass (measured by bioelectrical impedance analysis). The secondary outcomes will include the mean change of appendicular skeletal muscle mass, body fat mass, basal metabolic rate, phase angle, muscle function and serum biomarkers. The enrolment will commence in December 2021 and will proceed until March 2022. ETHICS AND DISSEMINATION: This protocol has been approved by the Biomedical Ethics Committee of West China Hospital (2021-771). All potential subjects will be required to sign a written informed consent. The results of this study will be reported in peer-reviewed academic journals and conferences. TRIAL REGISTRATION NUMBER: NCT04953936.


Assuntos
Músculo Esquelético , Valeratos , Idoso , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Músculo Esquelético/fisiologia , Obesidade/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Redução de Peso
16.
Front Cell Dev Biol ; 10: 831329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531101

RESUMO

Given the tumor heterogeneity, most of the current prognostic indicators cannot accurately evaluate the prognosis of patients with prostate cancer, and thus, the best opportunity to intervene in the progression of this disease is missed. E2F transcription factors (E2Fs) have been reported to be involved in the growth of various cancers. Accumulating studies indicate that prostate cancer (PCa) carcinogenesis is attributed to aberrant E2F expression or E2F alteration. However, the expression patterns and prognostic value of the eight E2Fs in prostate cancer have yet to be explored. In this study, The Cancer Genome Atlas (TCGA), Kaplan-Meier Plotter, Metascape, the Kyoto Encyclopedia of Genes and Genomes (KEGG), CIBERSORT, and cBioPortal and bioinformatic analysis were used to investigate E2Fs in patients with PCa. Our results showed that the expression of E2F1-3, E2F5, and E2F6 was higher in prostate cancer tissues than in benign tissues. Furthermore, elevated E2F1-3 and E2F5 expression levels were associated with a higher Gleason score (GS), advanced tumor stage, and metastasis. Survival analysis suggested that high transcription levels of E2F1-3, E2F5, E2F6, and E2F8 were associated with a higher risk of biochemical recurrence. In addition, we developed a prognostic model combining E2F1, E2F6, Gleason score, and the clinical stage that may accurately predict a biochemical recurrence-free survival. Functional enrichment analysis revealed that the E2F family members and their neighboring genes were mainly enriched in cell cycle-related pathways. Somatic mutations in different subgroups were also investigated, and immune components were predicted. Further experiments are warranted to clarify the biological associations between Pca-related E2F family genes, which may influence prognosis via the cell cycle pathway.

17.
Dis Markers ; 2022: 8724035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548776

RESUMO

Background: In our previous research, we developed a 32-gene risk index model that may be utilized as a robust prognostic method for predicting prostate cancer (PCa) recurrence after surgery. Among the 32 genes, the Fifth Ewing Variant (FEV) gene was one of the top downregulated genes in relapsed PCa. However, current understanding of the FEV gene and its involvement in PCa is limited. Methods: FEV mRNA expression was analyzed and correlated to clinical outcomes in PCa patients who underwent prostatectomy at the Massachusetts General Hospital. Specimens from tissue microarray (TMA) including 102 prostate cancer patients were analysis for the expression of FEV. Meanwhile, FEV expression profiles were also assessed in PCa cell lines and in BPH-1 prostate epithelial cells using western blotting and quantitative reverse transcription-PCR (qRT-PCR). Furthermore, we transfected LNCaP and PC-3 cells with either an empty vector or full-length FEV gene and performed in vitro cell functional assays. The part FEV plays in tumor xenograft growth was also assessed in vivo. Results: Of the 191 patients included in this study base on the DASL dataset, 77 (40.3%) and 24 (13.6%), respectively, developed prostate-specific antigen (PSA) relapse and metastasis postradical prostatectomy. Significant FEV downregulation was observed in PCa patients showing PSA failure and metastasis. The protein expression of FEV was significantly negatively correlated with the Gleason score and pathological stage in prostate cancer tissues. Similarly, FEV expression significantly decreased in all PCa cell lines relative to BPH-1 (all P < 0.05). Functional assays revealed that FEV expression markedly inhibited PCa cell growth, migration, and invasion, which in turn significantly repressed the growth of tumor xenografts in vivo. Conclusion: The results of this study suggest an association between downregulated FEV expression and PSA relapse in PCa patients. In addition, FEV may act as a tumor suppressor in PCa.


Assuntos
Proteínas de Ligação a DNA , Hiperplasia Prostática , Neoplasias da Próstata , Fatores de Transcrição , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Recidiva Local de Neoplasia/patologia , Antígeno Prostático Específico , Prostatectomia/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
18.
Med Sci Monit ; 28: e936079, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35318299

RESUMO

BACKGROUND Previous studies have demonstrated that embryo development and the occurrence of tumors are closely related, as key genes, pathways, miRNAs, and other biological mechanisms are involved in both processes. Extensive research has found that abnormal development of nerve ectodermal cells not only leads to neural tube defects (NTDs), but also neuroectodermal tumors. MATERIAL AND METHODS Genes associated with both NTDs and neuroectodermal tumors were obtained from the DisGeNET database. The STRING database was used to construct the protein-protein interaction (PPI) network and the hub genes were visualized using Cytoscape. Additionally, we predicted the miRNAs targeting the identified genes. Sequencing data obtained from an NTDs mouse model and human samples were used to confirm the bioinformatics results. Moreover, a dual-luciferase report assay was used to validate the targeting relationship between the miRNA-gene pairs identified. RESULTS A total of 104 intersection genes of NTDs-related and neuroectodermal tumors-related genes were obtained; 20 of these genes were differentially expressed in NTDs samples and had very close interactions. Among 10 hub genes, we identified 3 important susceptibility genes differentially expressed both in RA-induced NTDs mice and human glioblastoma samples: Ncam1, Shh, and Ascl1. Among these, we found that the Ncam1 expression level was regulated by mmu-miR-30a-5p, and the Ascl1 expression level was regulated by mmu-miR-375-3p. CONCLUSIONS In conclusion, we identified differentially expressed genes and a potential miRNA-mediated regulation mechanism shared between NTDs and neuroectodermal tumors that may guide future studies aiming to find novel therapeutic targets for NTDs or neuroectodermal tumors.


Assuntos
MicroRNAs , Defeitos do Tubo Neural , Tumores Neuroectodérmicos , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Defeitos do Tubo Neural/genética , Mapas de Interação de Proteínas/genética
19.
Aging Cell ; 21(3): e13566, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148456

RESUMO

The molecular mechanisms underlying functional decline during normal brain aging are poorly understood. Here, we identified the actin-associated protein tropomyosin 1 (TPM1) as a new systemic pro-aging factor associated with function deficits in normal aging retinas. Heterochronic parabiosis and blood plasma treatment confirmed that systemic factors regulated age-related inflammatory responses and the ectopic dendritic sprouting of rod bipolar (RBC) and horizontal (HC) cells in the aging retina. Proteomic analysis revealed that TPM1 was a potential systemic molecule underlying structural and functional deficits in the aging retina. Recombinant TPM1 protein administration accelerated the activation of glial cells, the dendritic sprouting of RBCs and HCs and functional decline in the retina of young mice, whereas anti-TPM1 neutralizing antibody treatment ameliorated age-related structural and function changes in the retina of aged mice. Old mouse plasma (OMP) induced glial cell activation and the dendritic outgrowth of RBCs and HCs in young mice, and yet TMP1-depleted OMP failed to reproduce the similar effect in young mice. These results confirmed that TPM1 was a systemic pro-aging factor. Moreover, we demonstrated that systematic TPM1 was an immune-related molecule, which elicited endogenous TPM1 expression and inflammation by phosphorylating PKA and regulating FABP5/NF-κB signaling pathway in normal aging retinas. Interestingly, we observed TPM1 upregulation and the ectopic dendritic sprouting of RBCs and HCs in young mouse models of Alzheimer's disease, indicating a potential role of TPM1 in age-related neurodegenerative diseases. Our data indicate that TPM1 could be targeted for combating the aging process.


Assuntos
NF-kappa B , Proteômica , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Inflamação/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Plasticidade Neuronal , Retina/metabolismo , Transdução de Sinais , Tropomiosina
20.
Materials (Basel) ; 15(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35057283

RESUMO

An experimental study on the flow rate and atomization characteristics of a new gas-liquid two-phase flow nozzle was carried out to use high-concentration respirable dust in the workplace of high-efficiency sedimentation coal production based on the gas-liquid two-phase flow nozzle technology. The simulation roadway of dust fall in large coal mines was constructed, and the respirable rock dust produced by fully mechanized mining surfaces was chosen as the research object. The effects of humidity on the capture effect of respirable rock dust were analyzed in the experimental study. The results demonstrated that: (1) the distribution range of the particle size of fogdrops declines with the reduction in fogdrops D50, D[3,2] and D[4,3], which are produced by gas-liquid two-phase flow nozzles. (2) The initial ambient humidity in the simulated roadway was 64.8% RH. After the gas-liquid two-phase flow spray was started, the ambient humidity was elevated by 23.2 to 23.5% RH within 840s and tended to be stable and no longer grew after reaching 88.0-88.3% RH. The initial growth rate of the ambient humidity in the simulated roadway was high, and then was gradually slowed down. (3) Humidity is an important factor influencing the collection of respirable dust. The humidity at 10.0 m leeward of the dust-producing point was increased by 19.6% RH, and the sedimentation rate of respirable dust was increased by 6.73%; the two growth rates were 13.1% RH and 9.90% at 20.0 m; 16.4% RH and 15.42% at 30.0 m; 18.4% RH and 11.20% at 40.0 m. In practical applications of the gas-liquid two-phase flow nozzle in coal mining activities, attention shall be paid to not only the influences of its atomization characteristics on the capture effect of respirable dust but also the influences of the flow rate of the nozzle on the humidity of the working surface. Appropriate gas and water supply pressures shall be chosen according to the space and respirable dust concentration on the working surface to realize a better dust removal effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA