Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Rev ; 47(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37222477

RESUMO

Cyclic dimeric adenosine monophosphate (cyclic-di-AMP) is a nucleotide second messenger present in Gram-positive bacteria, Gram-negative bacteria and some Archaea. The intracellular concentration of cyclic-di-AMP is adjusted in response to environmental and cellular cues, primarily through the activities of synthesis and degradation enzymes. It performs its role by binding to protein and riboswitch receptors, many of which contribute to osmoregulation. Imbalances in cyclic-di-AMP can lead to pleiotropic phenotypes, affecting aspects such as growth, biofilm formation, virulence, and resistance to osmotic, acid, and antibiotic stressors. This review focuses on cyclic-di-AMP signalling in lactic acid bacteria (LAB) incorporating recent experimental discoveries and presenting a genomic analysis of signalling components from a variety of LAB, including those found in food, and commensal, probiotic, and pathogenic species. All LAB possess enzymes for the synthesis and degradation of cyclic-di-AMP, but are highly variable with regards to the receptors they possess. Studies in Lactococcus and Streptococcus have revealed a conserved function for cyclic-di-AMP in inhibiting the transport of potassium and glycine betaine, either through direct binding to transporters or to a transcriptional regulator. Structural analysis of several cyclic-di-AMP receptors from LAB has also provided insights into how this nucleotide exerts its influence.


Assuntos
AMP Cíclico , Lactobacillales , AMP Cíclico/metabolismo , Lactobacillales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Monofosfato de Adenosina
2.
Appl Environ Microbiol ; 88(23): e0120822, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36350133

RESUMO

Angucyclines are a family of structurally diverse, aromatic polyketides with some members that exhibit potent bioactivity. Angucyclines have also attracted considerable attention due to the intriguing biosynthetic origins that underlie their structural complexity and diversity. Balmoralmycin (compound 1) represents a unique group of angucyclines that contain an angular benz[α]anthracene tetracyclic system, a characteristic C-glycosidic bond-linked deoxy-sugar (d-olivose), and an unsaturated fatty acid chain. In this study, we identified a Streptomyces strain that produces balmoralmycin and seven biosynthetically related coproducts (compounds 2-8). Four of the coproducts (compounds 5-8) are novel compounds that feature a highly oxygenated or fragmented lactone ring, and three of them (compounds 3-5) exhibited cytotoxicity against the human pancreatic cancer cell line MIA PaCa-2 with IC50 values ranging from 0.9 to 1.2 µg/mL. Genome sequencing and CRISPR/dCas9-assisted gene knockdown led to the identification of the ~43 kb balmoralmycin biosynthetic gene cluster (bal BGC). The bal BGC encodes a type II polyketide synthase (PKS) system for assembling the angucycline aglycone, six enzymes for generating the deoxysugar d-olivose, and a hybrid type II/III PKS system for synthesizing the 2,4-decadienoic acid chain. Based on the genetic and chemical information, we propose a mechanism for the biosynthesis of balmoralmycin and the shunt products. The chemical and genetic studies yielded insights into the biosynthetic origin of the structural diversity of angucyclines. IMPORTANCE Angucyclines are structurally diverse aromatic polyketides that have attracted considerable attention due to their potent bioactivity and intriguing biosynthetic origin. Balmoralmycin is a representative of a small family of angucyclines with unique structural features and an unknown biosynthetic origin. We report a newly isolated Streptomyces strain that produces balmoralmycin in a high fermentation titer as well as several structurally related shunt products. Based on the chemical and genetic information, a biosynthetic pathway that involves a type II polyketide synthase (PKS) system, cyclases/aromatases, oxidoreductases, and other ancillary enzymes was established. The elucidation of the balmoralmycin pathway enriches our understanding of how structural diversity is generated in angucyclines and opens the door for the production of balmoralmycin derivatives via pathway engineering.


Assuntos
Policetídeos , Streptomyces , Humanos , Vias Biossintéticas/genética , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Streptomyces/metabolismo , Linhagem Celular Tumoral
3.
J Fungi (Basel) ; 7(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34682208

RESUMO

For years, fungi have served as repositories of bioactive secondary metabolites that form the backbone of many existing drugs. With the global rise in infections associated with antimicrobial resistance, in addition to the growing burden of non-communicable disease, such as cancer, diabetes and cardiovascular ailments, the demand for new drugs that can provide an improved therapeutic outcome has become the utmost priority. The exploration of microbes from understudied and specialized niches is one of the promising ways of discovering promising lead molecules for drug discovery. In recent years, a special class of plant-associated fungi, namely, fungal endophytes, have emerged as an important source of bioactive compounds with unique chemistry and interesting biological activities. The present review focuses on endophytic fungi and their classification, rationale for selection and prioritization of host plants for fungal isolation and examples of strategies that have been adopted to induce the activation of cryptic biosynthetic gene clusters to enhance the biosynthetic potential of fungal endophytes.

4.
J Am Chem Soc ; 143(30): 11500-11509, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34293863

RESUMO

Anthraquinone-fused enediynes (AQEs) are renowned for their distinctive molecular architecture, reactive enediyne warhead, and potent anticancer activity. Although the first members of AQEs, i.e., dynemicins, were discovered three decades ago, how their nitrogen-containing carbon skeleton is synthesized by microbial producers remains largely a mystery. In this study, we showed that the recently discovered sungeidine pathway is a "degenerative" AQE pathway that contains upstream enzymes for AQE biosynthesis. Retrofitting the sungeidine pathway with genes from the dynemicin pathway not only restored the biosynthesis of the AQE skeleton but also produced a series of novel compounds likely as the cycloaromatized derivatives of chemically unstable biosynthetic intermediates. The results suggest a cascade of highly surprising biosynthetic steps leading to the formation of the anthraquinone moiety, the hallmark C8-C9 linkage via alkyl-aryl cross-coupling, and the characteristic epoxide functionality. The findings provide unprecedented insights into the biosynthesis of AQEs and pave the way for examining these intriguing biosynthetic enzymes.

5.
mBio ; 12(2)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832972

RESUMO

The broadly conserved cyclic di-AMP (c-di-AMP) is a conditionally essential bacterial second messenger. The pool of c-di-AMP is fine-tuned through diadenylate cyclase and phosphodiesterase activities, and direct binding of c-di-AMP to proteins and riboswitches allows the regulation of a broad spectrum of cellular processes. c-di-AMP has a significant impact on intrinsic ß-lactam antibiotic resistance in Gram-positive bacteria; however, the reason for this is currently unclear. In this work, genetic studies revealed that suppressor mutations that decrease the activity of the potassium (K+) importer KupB or the glutamine importer GlnPQ restore cefuroxime (CEF) resistance in diadenylate cyclase (cdaA) mutants of Lactococcus lactis Metabolite analyses showed that glutamine is imported by GlnPQ and then rapidly converted to glutamate, and GlnPQ mutations or c-di-AMP negatively affects the pools of the most abundant free amino acids (glutamate and aspartate) during growth. In a high-c-di-AMP mutant, GlnPQ activity could be increased by raising the internal K+ level through the overexpression of a c-di-AMP-insensitive KupB variant. These results demonstrate that c-di-AMP reduces GlnPQ activity and, therefore, the level of the major free anions in L. lactis through its inhibition of K+ import. Excessive ion accumulation in cdaA mutants results in greater spontaneous cell lysis under hypotonic conditions, while CEF-resistant suppressors exhibit reduced cell lysis and lower osmoresistance. This work demonstrates that the overaccumulation of major counter-ion osmolyte pools in c-di-AMP-defective mutants of L. lactis causes cefuroxime sensitivity.IMPORTANCE The bacterial second messenger cyclic di-AMP (c-di-AMP) is a global regulator of potassium homeostasis and compatible solute uptake in many Gram-positive bacteria, making it essential for osmoregulation. The role that c-di-AMP plays in ß-lactam resistance, however, is unclear despite being first identified a decade ago. Here, we demonstrate that the overaccumulation of potassium or free amino acids leads to cefuroxime sensitivity in Lactococcus lactis mutants partially defective in c-di-AMP synthesis. It was shown that c-di-AMP negatively affects the levels of the most abundant free amino acids (glutamate and aspartate) in L. lactis Regulation of these major free anions was found to occur via the glutamine transporter GlnPQ, whose activity increased in response to intracellular potassium levels, which are under c-di-AMP control. Evidence is also presented showing that they are major osmolytes that enhance osmoresistance and cell lysis. The regulatory reach of c-di-AMP can be extended to include the main free anions in bacteria.


Assuntos
Antibacterianos/farmacologia , Cefuroxima/farmacologia , AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Lactococcus lactis/metabolismo , Potássio/metabolismo , Sistemas do Segundo Mensageiro
6.
J Am Chem Soc ; 142(4): 1673-1679, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31922407

RESUMO

We report the genome-guided discovery of sungeidines, a class of microbial secondary metabolites with unique structural features. Despite evolutionary relationships with dynemicin-type enediynes, the sungeidines are produced by a biosynthetic gene cluster (BGC) that exhibits distinct differences from known enediyne BGCs. Our studies suggest that the sungeidines are assembled from two octaketide chains that are processed differently than those of the dynemicin-type enediynes. The biosynthesis also involves a unique activating sulfotransferase that promotes a dehydration reaction. The loss of genes, including a putative epoxidase gene, is likely to be the main cause of the divergence of the sungeidine pathway from other canonical enediyne pathways. The findings disclose the surprising evolvability of enediyne pathways and set the stage for characterizing the intriguing enzymatic steps in sungeidine biosynthesis.


Assuntos
Vias Biossintéticas , Enedi-Inos/metabolismo , Antibióticos Antineoplásicos/metabolismo , Família Multigênica
7.
PLoS Genet ; 14(8): e1007574, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30074984

RESUMO

The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K+) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growth of bacteria under high osmotic conditions. To better understand how bacteria can adjust in response to excessive c-di-AMP levels and to identify signals that feed into the c-di-AMP network, we characterised genes identified in a screen for osmoresistant suppressor mutants of the high c-di-AMP Lactococcus ΔgdpP strain. Mutations were identified which increased the uptake of osmoprotectants, including gain-of-function mutations in a Kup family K+ importer (KupB) and inactivation of the glycine betaine transporter transcriptional repressor BusR. The KupB mutations increased the intracellular K+ level while BusR inactivation increased the glycine betaine level. In addition, BusR was found to directly bind c-di-AMP and repress expression of the glycine betaine transporter in response to elevated c-di-AMP. Interestingly, overactive KupB activity or loss of BusR triggered c-di-AMP accumulation, suggesting turgor pressure changes act as a signal for this second messenger. In another group of suppressors, overexpression of an operon encoding an EmrB family multidrug resistance protein allowed cells to lower their intracellular level of c-di-AMP through active export. Lastly evidence is provided that c-di-AMP levels in several bacteria are rapidly responsive to environmental osmolarity changes. Taken together, this work provides evidence for a model in which high c-di-AMP containing cells are dehydrated due to lower K+ and compatible solute levels and that this osmoregulation system is able to sense and respond to cellular water stress.


Assuntos
Proteínas de Bactérias/fisiologia , Betaína/metabolismo , AMP Cíclico/metabolismo , Lactococcus lactis/fisiologia , Osmorregulação , Potássio/metabolismo , Monofosfato de Adenosina , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/genética , Mutação , Óperon , Concentração Osmolar , Sistemas do Segundo Mensageiro
8.
Curr Genet ; 62(4): 731-738, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27074767

RESUMO

Bacteria can sense environmental cues and alter their physiology accordingly through the use of signal transduction pathways involving second messenger nucleotides. One broadly conserved second messenger is cyclic-di-AMP (c-di-AMP) which regulates a range of processes including cell wall homeostasis, potassium uptake, DNA repair, fatty acid synthesis, biofilm formation and central metabolism in bacteria. The intracellular pool of c-di-AMP is maintained by the activities of diadenylate cyclase (DAC) and phosphodiesterase (PDE) enzymes, as well as possibly via c-di-AMP export. Whilst extracellular stimuli regulating c-di-AMP levels in bacteria are poorly understood, recent work has identified effector proteins which directly interact and alter the activity of DACs. These include the membrane bound CdaR and the phosphoglucosamine mutase GlmM which both bind directly to the membrane bound CdaA DAC and the recombination protein RadA which binds directly to the DNA binding DisA DAC. The genes encoding these multiprotein complexes are co-localised in many bacteria providing further support for their functional connection. The roles of GlmM in peptidoglycan synthesis and RadA in Holliday junction intermediate processing suggest that c-di-AMP synthesis by DACs will be responsive to these cellular activities. In addition to these modulatory interactions, permanent dysregulation of DAC activity due to suppressor mutations can occur during selection to overcome growth defects, rapid cell lysis and osmosensitivity. DACs have also been investigated as targets for the development of new antibiotics and several small compound inhibitors have recently been identified. This review aims to provide an overview of how c-di-AMP synthesis by DACs can be regulated.


Assuntos
Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mutação , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
9.
Mol Microbiol ; 99(6): 1015-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26585449

RESUMO

The second messenger cyclic-di-adenosine monophosphate (c-di-AMP) plays important roles in growth, virulence, cell wall homeostasis, potassium transport and affects resistance to antibiotics, heat and osmotic stress. Most Firmicutes contain only one c-di-AMP synthesizing diadenylate cyclase (CdaA); however, little is known about signals and effectors controlling CdaA activity and c-di-AMP levels. In this study, a genetic screen was employed to identify components which affect the c-di-AMP level in Lactococcus. We characterized suppressor mutations that restored osmoresistance to spontaneous c-di-AMP phosphodiesterase gdpP mutants, which contain high c-di-AMP levels. Loss-of-function and gain-of-function mutations were identified in the cdaA and gdpP genes, respectively, which led to lower c-di-AMP levels. A mutation was also identified in the phosphoglucosamine mutase gene glmM, which is commonly located within the cdaA operon in bacteria. The glmM I154F mutation resulted in a lowering of the c-di-AMP level and a reduction in the key peptidoglycan precursor UDP-N-acetylglucosamine in L. lactis. C-di-AMP synthesis by CdaA was shown to be inhibited by GlmM(I154F) more than GlmM and GlmM(I154F) was found to bind more strongly to CdaA than GlmM. These findings identify GlmM as a c-di-AMP level modulating protein and provide a direct connection between c-di-AMP synthesis and peptidoglycan biosynthesis.


Assuntos
Adenilil Ciclases/metabolismo , Fosfatos de Dinucleosídeos/biossíntese , Lactococcus lactis/metabolismo , Fosfoglucomutase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , AMP Cíclico/metabolismo , Lactococcus lactis/enzimologia , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro
10.
Biochemistry ; 54(31): 4936-51, 2015 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-26171638

RESUMO

Cyclic di-AMP (c-di-AMP) is a relatively new member of the family of bacterial cyclic dinucleotide second messengers. It has attracted significant attention in recent years because of the abundant roles it plays in a variety of Gram-positive bacteria. The structural features that allow diverse bacterial proteins to bind c-di-AMP are not fully understood. Here we report the biophysical and structural studies of c-di-AMP in complex with a bacterial cation-proton antiporter (CpaA) RCK (regulator of the conductance of K(+)) protein from Staphylococcus aureus (Sa). The crystal structure of the SaCpaA_RCK C-terminal domain (CTD) in complex with c-di-AMP was determined to a resolution of 1.81 Å. This structure revealed two well-liganded water molecules, each interacting with one of the adenine bases by a unique H2Olp-π interaction to stabilize the complex. Sequence blasting using the SaCpaA_RCK primary sequence against the bacterial genome database returned many CpaA analogues, and alignment of these sequences revealed that the active site residues are all well-conserved, indicating a universal c-di-AMP binding mode for CpaA_RCK. A proteoliposome activity assay using the full-length SaCpaA membrane protein indicated that c-di-AMP binding alters its antiporter activity by approximately 40%. A comparison of this structure to all other reported c-di-AMP-receptor complex structures revealed that c-di-AMP binds to receptors in either a "U-shape" or "V-shape" mode. The two adenine rings are stabilized in the inner interaction zone by a variety of CH-π, cation-π, backbone-π, or H2Olp-π interaction, but more commonly in the outer interaction zone by hydrophobic CH-π or π-π interaction. The structures determined to date provide an understanding of the mechanisms by which a single c-di-AMP can interact with a variety of receptor proteins, and how c-di-AMP binds receptor proteins in a special way different from that of c-di-GMP.


Assuntos
Antiporters/química , Proteínas de Bactérias/química , Fosfatos de Dinucleosídeos/química , Staphylococcus aureus/química , Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Staphylococcus aureus/metabolismo
11.
J Biol Chem ; 288(17): 11949-59, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23504327

RESUMO

The Bacillus subtilis protein YybT (or GdpP) and its homologs were recently established as stress signaling proteins that exert their biological effect by degrading the bacterial messenger cyclic di-AMP. YybT homologs contain a small Per-ARNT-Sim (PAS) domain (~80 amino acids) that can bind b-type heme with 1:1 stoichiometry despite the small size of the domain and the lack of a conserved heme iron-coordinating residue. We determined the solution structure of the PAS domain of GtYybT from Geobacillus thermodenitrificans by NMR spectroscopy to further probe its function. The solution structure confirms that PASGtYybT adopts the characteristic PAS fold composed of a five-stranded antiparallel ß sheet and a few short α-helices. One α-helix and three central ß-strands of PASGtYybT are noticeably shorter than those of the typical PAS domains. Despite the small size of the protein domain, a hydrophobic pocket is formed by the side chains of nonpolar residues stemming from the ß-strands and α-helices. A set of residues in the vicinity of the pocket and in the C-terminal region at the dimeric interface exhibits perturbed NMR parameters in the presence of heme or zinc protoporphyrin. Together, the results unveil a compact PAS domain with a potential ligand-binding pocket and reinforce the view that the PASYybT domains function as regulatory domains in the modulation of cellular cyclic di-AMP concentration.


Assuntos
Proteínas de Bactérias/química , Geobacillus/química , Dobramento de Proteína , Multimerização Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/genética , Fosfatos de Dinucleosídeos/metabolismo , Geobacillus/genética , Geobacillus/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
J Biol Chem ; 286(4): 2910-7, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21098028

RESUMO

FimX is a multidomain signaling protein required for type IV pilus biogenesis and twitching motility in the opportunistic pathogen Pseudomonas aeruginosa. FimX is localized to the single pole of the bacterial cell, and the unipolar localization is crucial for the correct assembly of type IV pili. FimX contains a non-catalytic EAL domain that lacks cyclic diguanylate (c-di-GMP) phosphodiesterase activity. It was shown that deletion of the EAL domain or mutation of the signature EVL motif affects the unipolar localization of FimX. However, it was not understood how the C-terminal EAL domain could influence protein localization considering that the localization sequence resides in the remote N-terminal region of the protein. Using hydrogen/deuterium exchange-coupled mass spectrometry, we found that the binding of c-di-GMP to the EAL domain triggers a long-range (∼ca. 70 Å) conformational change in the N-terminal REC domain and the adjacent linker. In conjunction with the observation that mutation of the EVL motif of the EAL domain abolishes the binding of c-di-GMP, the hydrogen/deuterium exchange results provide a molecular explanation for the mediation of protein localization and type IV pilus biogenesis by c-di-GMP through a remarkable allosteric regulation mechanism.


Assuntos
Apolipoproteínas E/metabolismo , Hepacivirus/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Apolipoproteínas E/química , Apolipoproteínas E/genética , Linhagem Celular , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/ultraestrutura , Humanos , Espectrometria de Massas , Lipídeos de Membrana/química , Proteínas do Envelope Viral/genética
13.
J Mol Biol ; 404(2): 291-306, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20888341

RESUMO

Dynemicins are structurally related 10-membered enediyne natural products isolated from Micromonospora chernisa with potent antitumor and antibiotic activity. The early biosynthetic steps of the enediyne moiety of dynemicins are catalyzed by an iterative polyketide synthase (DynE8) and a thioesterase (DynE7). Recent studies indicate that the function of DynE7 is to off-load the linear biosynthetic intermediate assembled on DynE8. Here, we report crystal structures of DynE7 in its free form at 2.7 Å resolution and of DynE7 in complex with the DynE8-produced all-trans pentadecen-2-one at 2.1 Å resolution. These crystal structures reveal that upon ligand binding, significant conformational changes throughout the substrate-binding tunnel result in an expanded tunnel that traverses an entire monomer of the tetrameric DynE7 protein. The enlarged inner segment of the channel binds the carbonyl-conjugated polyene mainly through hydrophobic interactions, whereas the putative catalytic residues are located in the outer segment of the channel. The crystallographic information reinforces an unusual catalytic mechanism that involves a strictly conserved arginine residue for this subfamily of hot-dog fold thioesterases, distinct from the typical mechanism for hot-dog fold thioesterases that utilizes an acidic residue for catalysis.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Enedi-Inos/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Antibióticos Antineoplásicos/química , Catálise , Cristalografia por Raios X , Enedi-Inos/química , Ligantes , Micromonospora/genética , Micromonospora/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Mutagênese Sítio-Dirigida , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Tioléster Hidrolases/genética
14.
Protein Expr Purif ; 71(2): 132-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20064615

RESUMO

Acyl carrier protein phosphodiesterases (AcpH) are the only enzymes known to remove the 4'-phosphopantetheinyl moiety from holo acyl carrier proteins (ACP), which are a large family of proteins essential for the biosynthesis of lipid and other cellular metabolites. Here we report that the AcpH (paAcpH) from Pseudomonas aeruginosa can be overexpressed in Escherichia coli as a soluble and stable protein after optimization of the expression and purification conditions. This marks an improvement from the aggregation-prone E. coli AcpH that could only be obtained by refolding the polypeptide obtained from the inclusion body. With the soluble recombinant protein, we found that PaAcpH exhibits preferred substrate specificity towards the ACPs from the fatty acid synthesis pathway among eight carrier proteins. We further showed that PaAcpH hydrolyzes and releases the 4'-phosphopantetheinyl group-linked products from a multidomain polyketide synthase, demonstrating that the enzyme is fully capable of hydrolyzing acylated ACP substrates.


Assuntos
Proteína de Transporte de Acila/metabolismo , Diester Fosfórico Hidrolases/isolamento & purificação , Diester Fosfórico Hidrolases/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/isolamento & purificação , Clonagem Molecular , DNA Bacteriano/genética , Escherichia coli/metabolismo , Diester Fosfórico Hidrolases/genética , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/genética
15.
J Biol Chem ; 285(1): 473-82, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19901023

RESUMO

The cyclic dinucleotide c-di-AMP [corrected] synthesized by the diadenylate cyclase domain was discovered recently [corrected] as a messenger molecule for signaling DNA breaks in Bacillus subtilis. By searching bacterial genomes, we identified a family of DHH/DHHA1 domain proteins (COG3387) that co-occur with a subset of the diadenylate cyclase domain proteins. Here we report that the B. subtilis protein YybT, a member of the COG3387 family proteins, exhibits phosphodiesterase activity toward cyclic dinucleotides. The DHH/DHHA1 domain hydrolyzes c-di-AMP and c-di-GMP to generate the linear dinucleotides 5'-pApA and 5'-pGpG. The data suggest that c-di-AMP could be the physiological substrate for YybT given the physiologically relevant Michaelis-Menten constant (K(m)) and the presence of YybT family proteins in the bacteria lacking c-di-GMP signaling network. The bacterial regulator ppGpp was found to be a strong competitive inhibitor of the DHH/DHHA1 domain, suggesting that YybT is under tight control during stringent response. In addition, the atypical GGDEF domain of YybT exhibits unexpected ATPase activity, distinct from the common diguanylate cyclase activity for GGDEF domains. We further demonstrate the participation of YybT in DNA damage and acid resistance by characterizing the phenotypes of the DeltayybT mutant. The novel enzymatic activity and stress resistance together point toward a role for YybT in stress signaling and response.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Diester Fosfórico Hidrolases/química , Transdução de Sinais , Ácidos , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/efeitos dos fármacos , Dano ao DNA , Fosfatos de Dinucleosídeos/metabolismo , Guanosina Tetrafosfato/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Metais/farmacologia , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Especificidade por Substrato/efeitos dos fármacos
16.
J Biol Chem ; 284(23): 15739-49, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19357082

RESUMO

The biosynthesis of the enediyne moiety of the antitumor natural product calicheamicin involves an iterative polyketide synthase (CalE8) and other ancillary enzymes. In the proposed mechanism for the early stage of 10-membered enediyne biosynthesis, CalE8 produces a carbonyl-conjugated polyene with the assistance of a putative thioesterase (CalE7). We have determined the x-ray crystal structure of CalE7 and found that the subunit adopts a hotdog fold with an elongated and kinked substrate-binding channel embedded between two subunits. The 1.75-A crystal structure revealed that CalE7 does not contain a critical catalytic residue (Glu or Asp) conserved in other hotdog fold thioesterases. Based on biochemical and site-directed mutagenesis studies, we proposed a catalytic mechanism in which the conserved Arg(37) plays a crucial role in the hydrolysis of the thioester bond, and that Tyr(29) and a hydrogen-bonded water network assist the decarboxylation of the beta-ketocarboxylic acid intermediate. Moreover, computational docking suggested that the substrate-binding channel binds a polyene substrate that contains a single cis double bond at the C4/C5 position, raising the possibility that the C4=C5 double bond in the enediyne moiety could be generated by the iterative polyketide synthase. Together, the results revealed a hotdog fold thioesterase distinct from the common type I and type II thioesterases associated with polyketide biosynthesis and provided interesting insight into the enediyne biosynthetic mechanism.


Assuntos
Enedi-Inos/metabolismo , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antineoplásicos/síntese química , Arginina/metabolismo , Sítios de Ligação , Carbazóis/farmacologia , Catálise , Sequência Conservada , Enedi-Inos/química , Enedi-Inos/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Policetídeo Sintases/química , Policetídeo Sintases/genética , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA