Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Heliyon ; 10(17): e36898, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296051

RESUMO

Background: Ovarian cancer (OV) is regarded as one of the most lethal malignancies affecting the female reproductive system, with individuals diagnosed with OV often facing a dismal prognosis due to resistance to chemotherapy and the presence of an immunosuppressive environment. T cells serve as a crucial mediator for immune surveillance and cancer elimination. This study aims to analyze the mechanism of T cell-associated markers in OV and create a prognostic model for clinical use in enhancing outcomes for OV patients. Methods: Based on the single-cell dataset GSE184880, this study used single-cell data analysis to identify characteristic T cell subsets. Analysis of high dimensional weighted gene co-expression network analysis (hdWGCNA) is utilized to identify crucial gene modules along with their corresponding hub genes. A grand total of 113 predictive models were formed utilizing ten distinct machine learning algorithms along with the combination of the cancer genome atlas (TCGA)-OV dataset and the GSE140082 dataset. The most dependable clinical prognostic model was created utilizing the leave one out cross validation (LOOCV) framework. The validation process for the models was achieved by conducting survival curve analysis and receiver operating characteristic (ROC) analysis. The relationship between risk scores and immune cells was explored through the utilization of the Cibersort algorithm. Additionally, an analysis of drug sensitivity was carried out to anticipate chemotherapy responses across various risk groups. The genes implicated in the model were authenticated utilizing qRT-PCR, cell viability experiments, and EdU assay. Results: This study developed a clinical prognostic model that includes ten risk genes. The results obtained from the training set of the study indicate that patients classified in the low-risk group experience a significant survival advantage compared to those in the high-risk group. The ROC analysis demonstrates that the model holds significant clinical utility. These results were verified using an independent dataset, strengthening the model's precision and dependability. The risk assessment provided by the model also serves as an independent prognostic factor for OV patients. The study also unveiled a noteworthy relationship between the risk scores calculated by the model and various immune cells, suggesting that the model may potentially serve as a valuable tool in forecasting responses to both immune therapy and chemotherapy in ovarian cancer patients. Notably, experimental evidence suggests that PFN1, one of the genes included in the model, is upregulated in human OV cell lines and has the capacity to promote cancer progression in in vitro models. Conclusion: We have created an accurate and dependable clinical prognostic model for OV capable of predicting clinical outcomes and categorizing patients. This model effectively forecasts responses to both immune therapy and chemotherapy. By regulating the immune microenvironment and targeting the key gene PFN1, it may improve the prognosis for high-risk patients.

2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273087

RESUMO

Activating enhancer-binding protein 2 (AP-2) is a family of transcription factors (TFs) that play crucial roles in regulating embryonic and oncogenic development. In addition to splice isoforms, five major family members encoded by the TFAP2A/B/C/D/E genes have been identified in humans, i.e., AP-2α/ß/γ/δ/ε. In general, the first three TFs have been studied more thoroughly than AP-2δ or AP-2ε. Currently, there is a relatively limited body of literature focusing on the AP-2 family in the context of gastroenterological research, and a comprehensive overview of the existing knowledge and recommendations for further research directions is lacking. Herein, we have collected available gastroenterological data on AP-2 TFs, discussed the latest medical applications of each family member, and proposed potential future directions. Research on AP-2 in gastrointestinal tumors has predominantly been focused on the two best-described family members, AP-2α and AP-2γ. Surprisingly, research in the past decade has highlighted the importance of AP-2ε in the drug resistance of gastric cancer (GC) and colorectal cancer (CRC). While numerous questions about gastroenterological disorders await elucidation, the available data undoubtedly open avenues for anti-cancer targeted therapy and overcoming chemotherapy resistance. In addition to gastrointestinal cancers, AP-2 family members (primarily AP-2ß and marginally AP-2γ) have been associated with other health issues such as obesity, type 2 diabetes, liver dysfunction, and pseudo-obstruction. On the other hand, AP-2δ has been poorly investigated in gastroenterological disorders, necessitating further research to delineate its role. In conclusion, despite the limited attention given to AP-2 in gastroenterology research, pivotal functions of these transcription factors have started to emerge and warrant further exploration in the future.


Assuntos
Fator de Transcrição AP-2 , Humanos , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Animais
3.
Medicine (Baltimore) ; 103(22): e38322, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-39259123

RESUMO

BACKGROUND: Recent studies have found that ferroptosis-related genes (FRGs) have broad applications in tumor therapy. However, the predictive potential of these genes in lung adenocarcinoma (LUAD) remains to be fully characterized. We aimed to investigate the FRGs that might be potential targets for LUAD. METHODS: We screened the RNA sequencing samples from LUAD patients from the GEO database and analyzed the ferroptosis-related differentially expressed genes (DEGs). A functional analysis of DEGs was performed. The risk model was constructed to evaluation and validation FRGs. We explored the immune landscape of LUAD and controls. The value of FRGs in diagnosing LUAD was tested in the GSE30219, GSE37745, GSE0081 datasets, and qPCR was used to verify their diagnostic value in LUAD patients in our hospital. RESULTS: A total of 1327 DEGs in quantitative proteomics were obtained, of which ferroptosis-related DEGs were 259. Enrichment analysis showed significant enrichment in the absorption and metabolism of fatty acids and arachidonic acid. The upregulated genes (GCLC, RRM2, AURKA, SLC7A5, and SLC2A1) and downregulated genes (ANGPTL7, ALOX15, ALOX15B, HSD17B11, IL33, TSC22D3, and DUOX1) were selected as core genes in tissue samples from 62 patients by qPCR. DUOX1 and HSD17B11 were obtained by bioinformatics analysis, both of which showed similar expression trends at the RNA and protein levels. The Kaplan-Meier method showed that DUOX1 and HSD17B11 were closely related to the overall survival (OS) of LUAD patients. CONCLUSION SUBSECTIONS: Ferroptosis-related genes DUOX1 and HSD17B11 are of considerable value in the diagnosis of LUAD patients. Their low expression suggests an increased recurrence rate and leads to a decrease in the patient quality of life.


Assuntos
Adenocarcinoma de Pulmão , Oxidases Duais , Ferroptose , Neoplasias Pulmonares , Microambiente Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , 20-Hidroxiesteroide Desidrogenases , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Oxidases Duais/genética , Estradiol Desidrogenases/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
4.
Oncol Lett ; 28(4): 470, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39139747

RESUMO

Immune checkpoint inhibitor (ICI) therapy, which targets programmed cell death protein 1, has demonstrated enhanced survival outcomes in numerous patients with cancer. Historically, individuals with autoimmune diseases have been excluded from clinical trials involving cancer immunotherapies due to concerns about the potential worsening of their underlying autoimmune conditions. In the present case report, a patient with non-small cell lung cancer and bullous pemphigoid (BP) who underwent treatment with the ICI pembrolizumab is described. In this specific clinical case, no severe exacerbation of the underlying autoimmune disease was observed. Contrarily, the patient not only tolerated pembrolizumab well but also experienced amelioration of the BP lesions after the treatment. This case challenges the conventional exclusion criteria for ICI therapy in patients with autoimmune diseases, suggesting the potential safety and efficacy of such treatments in this specific population. However, further investigations and larger-scale studies are warranted to validate these findings and provide a more comprehensive understanding of the implications of ICI therapy in patients with autoimmune comorbidities.

5.
Sci Rep ; 14(1): 19215, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160177

RESUMO

The aim of this study was to develop a medical imaging and comprehensive stacked learning-based method for predicting high- and low-risk thymoma. A total of 126 patients with thymomas and 5 patients with thymic carcinoma treated at our institution, including 65 low-risk patients and 66 high-risk patients, were retrospectively recruited. Among them, 78 patients composed the training cohort, while the remaining 53 patients formed the validation cohort. We extracted 1702 features each from the patients' arterial-, venous-, and plain-phase images. Pairwise subtraction of these features yielded 1702 arterial-venous, arterial-plain, and venous-plain difference features each. The Mann‒Whitney U test and least absolute shrinkage and selection operator (LASSO) and SelectKBest methods were employed to select the best features from the training set. Six models were built with a stacked learning algorithm. By applying stacked ensemble learning, three machine learning algorithms (XGBoost, multilayer perceptron (MLP), and random forest) were combined by XGBoost to produce the the six basic imaging models. Then, the XGBoost algorithm was applied to the six basic imaging models to construct a combined radiomic model. Finally, the radiomic model was combined with clinical information to create a nomogram that could easily be used in clinical practice to predict the thymoma risk category. The areas under the curve (AUCs) of the combined radiomic model in the training and validation cohorts were 0.999 (95% CI 0.988-1.000) and 0.967 (95% CI 0.916-1.000), respectively, while those of the nomogram were 0.999 (95% CI 0.996-1.000) and 0.983 (95% CI 0.990-1.000). This study describes the application of CT-based radiomics in thymoma patients and proposes a nomogram for predicting the risk category for this disease, which could be advantageous for clinical decision-making for affected patients.


Assuntos
Aprendizado de Máquina , Timoma , Neoplasias do Timo , Tomografia Computadorizada por Raios X , Humanos , Timoma/diagnóstico por imagem , Timoma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Neoplasias do Timo/diagnóstico por imagem , Neoplasias do Timo/patologia , Adulto , Estudos Retrospectivos , Idoso , Medição de Risco/métodos , Algoritmos , Nomogramas , Radiômica
6.
J Exp Clin Cancer Res ; 43(1): 200, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030638

RESUMO

BACKGROUND: The progression of non-small cell lung cancer (NSCLC) is significantly influenced by circular RNAs (circRNAs), especially in tumor hypoxia microenvironment. However, the precise functions and underlying mechanisms of dysregulated circRNAs in NSCLC remain largely unexplored. METHODS: Differentially expressed circRNAs in NSCLC tissues were identified through high-throughput RNA sequencing. The characteristics of circ_0007386 were rigorously confirmed via Sanger sequencing, RNase R treatment and actinomycin D treatment. The effects of circ_0007386 on proliferation and apoptosis were investigated using CCK8, cloning formation assays, TUNEL staining, and flow cytometry assays in vitro. In vivo, xenograft tumor models were used to evaluate its impact on proliferation. Mechanistically, the regulatory relationships of circ_0007386, miR-383-5p and CIRBP were examined through dual luciferase reporter assays and rescue experiments. Additionally, we detected the binding of EIF4A3 to CRIM1 pre-mRNA by RNA immunoprecipitation and the interaction between YAP1 and EIF4A3 under hypoxic conditions by co-immunoprecipitation. RESULTS: Our investigation revealed a novel circRNA, designated as circ_0007386, that was upregulated in NSCLC tissues and cell lines. Circ_0007386 modulated proliferation and apoptosis in NSCLC both in vitro and in vivo. Functionally, circ_0007386 acted as a sponge for miR-383-5p, targeting CIRBP, which influenced NSCLC cell proliferation and apoptosis via the PI3K/AKT signaling pathway. Furthermore, under hypoxic conditions, the interaction between YAP1 and EIF4A3 was enhanced, leading to the displacement of EIF4A4 from binding to CRIM1 pre-mRNA. This facilitated the back-splicing of CRIM1 pre-mRNA, increasing the formation of circ_0007386. The circ_0007386/miR-383-5p/CIRBP axis was significantly associated with the clinical features and prognosis of NSCLC patients. CONCLUSIONS: Circ_0007386, regulated by YAP1-EIF4A3 interaction under hypoxia conditions, plays an oncogenic role in NSCLC progression via the miR-383-5p/CIRBP axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Progressão da Doença , Fator de Iniciação 4A em Eucariotos , Neoplasias Pulmonares , RNA Circular , Proteínas de Sinalização YAP , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Proteínas de Sinalização YAP/metabolismo , Camundongos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Linhagem Celular Tumoral , Proliferação de Células , Precursores de RNA/metabolismo , Precursores de RNA/genética , Masculino , Splicing de RNA , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , RNA Helicases DEAD-box
7.
J Hematol Oncol ; 17(1): 33, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745196

RESUMO

The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.


Assuntos
Microbioma Gastrointestinal , Imunoterapia , Neoplasias , Humanos , Microbioma Gastrointestinal/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Animais
8.
Acta Pharmacol Sin ; 45(9): 1848-1860, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38719954

RESUMO

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.


Assuntos
Angiotensina II , Proteína Forkhead Box O3 , Hipertensão , Camundongos Knockout , Músculo Liso Vascular , Transdução de Sinais , Remodelação Vascular , Proteína Quinase 1 Deficiente de Lisina WNK , Animais , Músculo Liso Vascular/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Camundongos , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/genética , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células Cultivadas
9.
Biochem Soc Trans ; 52(3): 1085-1098, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38716888

RESUMO

In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.


Assuntos
Enzimas Desubiquitinantes , Humanos , Animais , Enzimas Desubiquitinantes/metabolismo , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Doenças Neuromusculares/metabolismo , Doenças Neuromusculares/genética , Doenças Neuromusculares/fisiopatologia , Doenças Neuromusculares/enzimologia , Doenças Musculares/metabolismo , Doenças Musculares/genética , Camundongos , Proteostase
10.
Nat Immunol ; 25(5): 834-846, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561495

RESUMO

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Assuntos
Antígenos CD , Apirase , Cadeias alfa de Integrinas , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Cadeias alfa de Integrinas/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia
11.
Cell Rep ; 43(5): 114152, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38669140

RESUMO

Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1ß (IL-1ß) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1ß cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1ß production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.


Assuntos
Inflamassomos , Interleucina-1beta , Macrófagos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteômica , Ubiquitina Tiolesterase , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteômica/métodos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética
12.
Signal Transduct Target Ther ; 9(1): 93, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637495

RESUMO

Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) protein significantly improve survival in patients with advanced non-small-cell lung cancer (NSCLC), but its impact on early-stage ground-glass opacity (GGO) lesions remains unclear. This is a single-arm, phase II trial (NCT04026841) using Simon's optimal two-stage design, of which 4 doses of sintilimab (200 mg per 3 weeks) were administrated in 36 enrolled multiple primary lung cancer (MPLC) patients with persistent high-risk (Lung-RADS category 4 or had progressed within 6 months) GGOs. The primary endpoint was objective response rate (ORR). T/B/NK-cell subpopulations, TCR-seq, cytokines, exosomal RNA, and multiplexed immunohistochemistry (mIHC) were monitored and compared between responders and non-responders. Finally, two intent-to-treat (ITT) lesions (pure-GGO or GGO-predominant) showed responses (ORR: 5.6%, 2/36), and no patients had progressive disease (PD). No grade 3-5 TRAEs occurred. The total response rate considering two ITT lesions and three non-intent-to-treat (NITT) lesions (pure-solid or solid-predominant) was 13.9% (5/36). The proportion of CD8+ T cells, the ratio of CD8+/CD4+, and the TCR clonality value were significantly higher in the peripheral blood of responders before treatment and decreased over time. Correspondingly, the mIHC analysis showed more CD8+ T cells infiltrated in responders. Besides, responders' cytokine concentrations of EGF and CTLA-4 increased during treatment. The exosomal expression of fatty acid metabolism and oxidative phosphorylation gene signatures were down-regulated among responders. Collectively, PD-1 inhibitor showed certain activity on high-risk pulmonary GGO lesions without safety concerns. Such effects were associated with specific T-cell re-distribution, EGF/CTLA-4 cytokine compensation, and regulation of metabolism pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptor de Morte Celular Programada 1/genética , Antígeno CTLA-4/uso terapêutico , Linfócitos T CD8-Positivos , Fator de Crescimento Epidérmico , Tomografia Computadorizada por Raios X , Pulmão/patologia , Receptores de Antígenos de Linfócitos T , Citocinas
13.
J Pharm Pharmacol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666699

RESUMO

OBJECTIVE: Quanzhen Yiqi decoction (QZYQ) is a traditional Chinese medicine for treating chronic obstructive pulmonary disease. METHODS: Mice were exposed to cigarette smoke (CS) 6 days/week (40 cigarettes/day) for 24 weeks and then intragastrically administered QZYQ (4.72, 9.45, or 18.89 g/kg) or dexamethasone (DEX, 0.6 mg/kg) for 6 weeks. We examined the lung function and collected bronchoalveolar lavage fluid for inflammatory cell and cytokine quantification. The pathological lung changes, ROS and oxidative biomarkers were measured. We used immunohistochemistry and western blotting to evaluate the levels of Nrf2/HO-1, NLRP3/ASC/Caspase1/IL-1ß/IL-18. RESULTS: The CS group showed significant increases in the forced vital capacity, lung resistance, and chord compliance and a lower FEV50/FVC compared with the control, and QZYQ improved these changes. In addition, QZYQ effectively reduced emphysema, immune cell infiltration, and airway remodeling. QZYQ stimulated HO-1 expression and reduced oxidative stress through the Nrf2 pathway. QZYQ inhibited the production of NLRP3/ASC/Caspase-1 to inhibit IL-1ß and IL-18. CONCLUSION: Our study suggested that QZYQ can improve the function and histology of the lungs and reduce inflammatory cell recruitment. QZYQ inhibits ROS production and NLRP3 inflammasome activation by upregulating Nrf2 to reduce lung injury. The anti-inflammatory effects of QZYQ are similar to those of DEX.

14.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453365

RESUMO

KRAS is a proto-oncogene encoding a small GTPase. Mutations contribute to ∼30% of human solid tumours, including lung adenocarcinoma, pancreatic, and colorectal carcinomas. Most KRAS activating mutations interfere with GTP hydrolysis, essential for its role as a molecular switch, leading to alterations in their molecular environment and oncogenic signalling. However, the precise signalling cascades these mutations affect are poorly understood. Here, APEX2 proximity labelling was used to profile the molecular environment of WT, G12D, G13D, and Q61H-activating KRAS mutants under starvation and stimulation conditions. Through quantitative proteomics, we demonstrate the presence of known KRAS interactors, including ARAF and LZTR1, which are differentially captured by WT and KRAS mutants. Notably, the KRAS mutations G12D, G13D, and Q61H abrogate their association with LZTR1, thereby affecting turnover. Elucidating the implications of LZTR1-mediated regulation of KRAS protein levels in cancer may offer insights into therapeutic strategies targeting KRAS-driven malignancies.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Ubiquitina-Proteína Ligases , Humanos , Proteínas Culina/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Fatores de Transcrição
15.
Sci Rep ; 14(1): 7620, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556580

RESUMO

Radiofrequency ablation (RFA) comparative efficacy of treatments using video-assisted thoracoscopic sympathectomy (VATS) in the long term remains uncertain in patients with palmar hyperhidrosis (PHH). This study aimed to compare the efficacy and safety of RFA and VATS in patients with PHH. We recruited patients aged ≥ 14 years with diagnosed PHH from 14 centres in China. The treatment options of RFA or VATS were assigned to two cohort in patients with PHH. The primary outcome was the efficacy at 1-year. A total of 807 patients were enrolled. After propensity score matching, the rate of complete remission was lower in RFA group than VATS group (95% CI 0.21-0.57; p < 0.001). However, the rates of palmar dryness (95% CI 0.38-0.92; p = 0.020), postoperative pain (95% CI 0.13-0.33; p < 0.001), and surgery-related complications (95% CI 0.19-0.85; p = 0.020) were lower in RFA group than in VATS group, but skin temperature rise was more common in RFA group (95% CI 1.84-3.58; p < 0.001). RFA had a lower success rate than VATS for the complete remission of PHH. However, the symptom burden and cost are lower in patients undergoing RFA compared to those undergoing VATS.Trial Registration: ChiCTR2000039576, URL: http://www.chictr.org.cn/index.aspx .


Assuntos
Hiperidrose , Ablação por Radiofrequência , Humanos , Resultado do Tratamento , Cirurgia Torácica Vídeoassistida/efeitos adversos , Hiperidrose/cirurgia , Ablação por Radiofrequência/efeitos adversos , Simpatectomia/efeitos adversos , Mãos
16.
World J Clin Cases ; 11(21): 5179-5186, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37583869

RESUMO

BACKGROUND: Congenital lymphangiectasia is a rare disease characterized by dilated interstitial lymphatic vessels and cystic expansion of the lymphatic vessels. Congenital lymphangiectasia can affect various organ systems; however, it frequently occurs in the lungs accompanied with unexplained pleural effusion. Further, it might not be diagnosed during prenatal examination owing to the absence of pronounced abnormalities. However, after birth the newborn rapidly develops respiratory distress that quickly deteriorates. Genetic variations in proteins controlling the development of lymphatic vessels contribute to the pathophysiology of this disease. We report a rare case of heterozygous mutation of ADAMTS3 and FLT4 genes, which have not been reported previously. CASE SUMMARY: We analysed the case of a neonate who had presented with only pleural effusion at a late gestational age and eventually died due to its inability to establish spontaneous breathing after birth. An autopsy revealed lymphangiectasia of the organ systems. Further, whole exome sequencing revealed heterozygous mutations of the lymphangiogenesis-controlling genes, ADAMTS3 and FLT4, and Sanger verification revealed similar lesions in the mother with no symptoms. CONCLUSION: Considering the presented case, obstetricians should observe unexplained foetal pleural effusion, and perform pathology analysis and whole exome sequencing for a conclusive diagnosis and prompt treatment.

17.
Cancer Res ; 83(20): 3400-3413, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37463466

RESUMO

GTP cyclohydrolase (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis. The catalysis of BH4 biosynthesis is tightly regulated for physiological neurotransmission, inflammation, and vascular tone. Paradoxically, BH4 has emerged as an oncometabolite regulating tumor growth, but the effects on tumor development remain controversial. Here, we found that GCH1 potentiated the growth of triple-negative breast cancer (TNBC) and HER2+ breast cancer and transformed nontumor breast epithelial cells. Independent of BH4 production, GCH1 protein induced epithelial-to-mesenchymal transition by binding to vimentin (Vim), which was mediated by HSP90. Conversely, GCH1 ablation impaired tumor growth, suppressed Vim in TNBC, and inhibited EGFR/ERK signaling while activating the p53 pathway in estrogen receptor-positive tumor cells. GCH1 deficiency increases tumor cell sensitivity to HSP90 inhibition and endocrine treatments. In addition, high GCH1 correlated with poor breast cancer survival. Together, this study reveals an enzyme-independent oncogenic role of GCH1, presenting it as a potential target for therapeutic development. SIGNIFICANCE: GTP cyclohydrolase functions as an oncogene in breast cancer and binds vimentin to induce epithelial-to-mesenchymal transition independently of its enzyme activity, which confers targetable vulnerabilities for developing breast cancer treatment strategies.

18.
Eur J Med Res ; 28(1): 217, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400851

RESUMO

Chronic obstructive pulmonary disease (COPD) is a serious chronic lung disease. Schisandrin A (SchA) is one of the most important active ingredients in Schisandra chinensis and has been used to treat various lung diseases in several countries. Here, we studied the pharmacological effect of SchA on airway inflammation induced by cigarette smoke (CS) and explored the therapeutic mechanism of SchA in COPD model mice. Our results showed that SchA treatment significantly improved the lung function of CS-induced COPD model mice and reduced the recruitment of leukocytes and hypersecretion of interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor α (TNF-α) in bronchoalveolar lavage fluid (BALF). H&E staining showed that SchA treatment could effectively reduce emphysema, immune cell infiltration and airway wall destruction. In addition, we found that SchA treatment can stimulate the expression of heme oxygenase-1 (HO-1) through the nuclear factor-erythroid 2-related factor (Nrf2) pathway, significantly reduce oxidative stress, increase catalase (CAT) and superoxide dismutase (SOD) levels, and suppress the level of malondialdehyde (MDA) in COPD model mice. Moreover, SchA treatment suppressed the generation of the NLRP3/ASC/Caspase1 inflammasome complex to inhibit the inflammatory response caused by IL-1ß and IL-18 and pyroptosis caused by GSDMD. In conclusion, our study shows that SchA treatment can inhibit the production of ROS and the activation of the NLRP3 inflammasome by upregulating Nrf-2, thereby producing anti-inflammatory effects and reducing lung injury in COPD model mice. More importantly, SchA exhibited similar anti-inflammatory effects to dexamethasone in COPD model mice, and we did not observe substantial side effects of SchA treatment. The high safety of SchA makes it a potential candidate drug for the treatment of COPD.


Assuntos
Inflamassomos , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamassomos/metabolismo , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Piroptose , Transdução de Sinais
19.
J Transl Med ; 21(1): 371, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291585

RESUMO

The transcription factor family activator protein 2 (TFAP2) is vital for regulating both embryonic and oncogenic development. The TFAP2 family consists of five DNA-binding proteins, including TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E. The importance of TFAP2 in tumor biology is becoming more widely recognized. While TFAP2D is not well studied, here, we mainly focus on the other four TFAP2 members. As a transcription factor, TFAP2 regulates the downstream targets directly by binding to their regulatory region. In addition, the regulation of downstream targets by epigenetic modification, posttranslational regulation, and interaction with noncoding RNA have also been identified. According to the pathways in which the downstream targets are involved in, the regulatory effects of TFAP2 on tumorigenesis are generally summarized as follows: stemness and EMT, interaction between TFAP2 and tumor microenvironment, cell cycle and DNA damage repair, ER- and ERBB2-related signaling pathway, ferroptosis and therapeutic response. Moreover, the factors that affect TFAP2 expression in oncogenesis are also summarized. Here, we review and discuss the most recent studies on TFAP2 and its effects on carcinogenesis and regulatory mechanisms.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neoplasias/genética , Transição Epitelial-Mesenquimal , Microambiente Tumoral , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo
20.
iScience ; 26(5): 106610, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168566

RESUMO

Cancer is a leading cause of mortality worldwide. Over 50% of cancers are diagnosed late, rendering many treatments ineffective. Existing liquid biopsy studies demonstrate a minimally invasive and inexpensive approach for disease detection but lack parsimonious biomarker selection, exhibit poor cancer detection performance and lack appropriate validation and testing. We established a tailored machine learning pipeline, DEcancer, for liquid biopsy analysis that addresses these limitations and improved performance. In a test set from a published cohort of 1,005 patients including 8 cancer types and 812 cancer-free individuals, DEcancer increased stage 1 cancer detection sensitivity across cancer types from 48 to 90%. In addition, with a test set cohort of patients from a high dimensional proteomics dataset of 61 lung cancer patients and 80 cancer-free individuals, DEcancer's performance using a 14-43 protein panel was comparable to 1,000 original proteins. DEcancer is a promising tool which may facilitate improved cancer detection and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA