Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1241580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693241

RESUMO

In this paper, we study the effect of microbial fermentation on the nutrient composition and flavor of sweet potato slurry, different strains of Aspergillus niger, Saccharomyces cerevisiae, Lactobacillus plantarum, Bacillus coagulans, Bacillus subtilis, Lactobacillus acidophilus, and Bifidobacterium brevis were employed to ferment sweet potato slurry. After 48 h of fermentation with different strains (10% inoculation amount), we compared the effects of several strains on the nutritional and functional constituents (protein, soluble dietary fiber, organic acid, soluble sugar, total polyphenol, free amino acid, and sensory characteristics). The results demonstrated that the total sugar level of sweet potato slurry fell significantly after fermentation by various strains, indicating that these strains can utilize the nutritious components of sweet potato slurry for fermentation. The slurry's total protein and phenol concentrations increased significantly, and many strains demonstrated excellent fermentation performance. The pH of the slurry dropped from 6.78 to 3.28 to 5.95 after fermentation. The fermentation broth contained 17 free amino acids, and the change in free amino acid content is closely correlated with the flavor of the sweet potato fermentation slurry. The gas chromatography-mass spectrometry results reveal that microbial fermentation can effectively increase the kinds and concentration of flavor components in sweet potato slurry, enhancing its flavor and flavor profile. The results demonstrated that Aspergillus niger fermentation of sweet potato slurry might greatly enhance protein and total phenolic content, which is crucial in enhancing nutrition. However, Bacillus coagulans fermentation can enhance the concentration of free amino acids in sweet potato slurry by 64.83%, with a significant rise in fresh and sweet amino acids. After fermentation by Bacillus coagulans, the concentration of lactic acid and volatile flavor substances also achieved its highest level, which can considerably enhance its flavor. The above results showed that Aspergillus niger and Bacillus coagulans could be the ideal strains for sweet potato slurry fermentation.

2.
Front Nutr ; 10: 1116982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908923

RESUMO

Bacillus subtilis has been extensively studied for its ability to inhibit the growth of harmful microorganisms and its high protease activity. In this study, Bacillus subtilis was used to ferment gluten and assess the effects of the fermentation process on the physicochemical, microstructure and antioxidant properties of gluten. The results of Fourier infrared spectroscopy (FT-IR) and circular chromatography (CD) showed a significant decrease in the content of α-helix structures and a significant increase in the content of ß-sheet structures in gluten after fermentation (p < 0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that glutenin was degraded into small molecular peptides with a molecular weight of less than 26 kDa after 24 h of fermentation; meanwhile, the fermentation process significantly increased the free amino acid content of the samples (p < 0.05), reaching 1923.38 µg/mL at 120 h of fermentation, which was 39.46 times higher than that at 24 h of fermentation (p < 0.05). In addition, the fermented back gluten has higher free radical scavenging activity and iron reduction capacity. Therefore, fermented gluten may be used as a functional food to alleviate oxidative stress. This study provides a reference for the high-value application of gluten.

3.
J Food Sci ; 87(6): 2549-2562, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35607810

RESUMO

Wheat embryo albumin (WEA) extracted from wheat embryo possesses multiple effects including antioxidant, anti-inflammatory, and immunoregulatory effects. In this study, a single factor experiment was conducted to determine the optimal enzymolysis conditions of WEA. Five components (F1-F5) were obtained via ultrafiltration, among which F3 (molecular weight 3-5 kDa) displayed the best antioxidant activity. WEA and F3 were characterized by transmission electron microscopy, scanning electron microscopy, circular dichroism spectrum analysis, and amino acid composition tests. Results revealed that F3 significantly increased the contents of ß-tablets, aromatic amino acids, and hydrophobic amino acids compared to WEA. LC-MS/MS analysis demonstrated that F3 had more tyrosine and histidine moieties than WEA. Moreover, analysis of the Maillard reaction products (MRPs) showed that F3-MRPs had strong browning strength, ultraviolet absorption, higher number of free amino acids, and umami amino acid ratio compared with WEA. In conclusion, enzymolysis can improve the functional properties of WEA, which broadens the application spectrum of WEA in food and pharmaceutical fields. PRACTICAL APPLICATION: This study provides a new approach for identifying potential antioxidants and developing functional foods from WEA, and broadens the application spectrum of wheat germ resources.


Assuntos
Antioxidantes , Produtos Finais de Glicação Avançada , Albuminas , Aminoácidos/química , Antioxidantes/química , Cromatografia Líquida , Produtos Finais de Glicação Avançada/química , Reação de Maillard , Peptídeos , Espectrometria de Massas em Tandem , Triticum
4.
Brain Res ; 1773: 147672, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34606748

RESUMO

Wheat embryo globulin nutrient (WEGN), with wheat embryo globulin (WEG) as the main functional component, is a nutritional combination that specifically targets memory impairment. In this study, we explored the protective role of WEGN on Alzheimer's disease (AD)-triggered cognitive impairment, neuronal injury, oxidative stress, and acetylcholine system disorder. Specifically, we established an AD model via administration of d-galactose (d-gal) and Aluminum chloride (AlCl3) for 70 days, then on the 36th day, administered animals in the donepezil and WEGN (300, 600, and 900 mg/kg) groups with drugs by gavage for 35 days. Learning and memory ability of the treated rats was tested using the Morris water maze (MWM) and novel object recognition (NOR) test, while pathological changes and neuronal death in their hippocampus CA1 were detected via HE staining and Nissl staining. Moreover, we determined antioxidant enzymes by measuring levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in serum, cortex, and hippocampus, whereas changes in the acetylcholine system were determined by evaluating choline acetyltransferase (ChAT), and acetylcholinesterase (AChE) activities, as well as choline acetylcholine (Ach) content. Results revealed that rats in the WEGN group exhibited significantly lower escape latency, as well as a significantly higher number of targeted crossings and longer residence times in the target quadrant, relative to those in the model group. Notably, rats in the WEGN group spent more time exploring new objects and exhibited lower damage to their hippocampus neuron, had improved learning and memory activity, as well as reversed histological alterations, relative to those in the model group. Meanwhile, biochemical examinations revealed that rats in the WEGN group had significantly lower MDA levels and AChE activities, but significantly higher GSH, SOD, and ChAT activities, as well as Ach content, relative to those in the model group. Overall, these findings indicate that WEGN exerts protective effects on cognitive impairment, neuronal damage, oxidative stress, and choline function in AD rats treated by d-gal/AlCl3.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Triticum , Cloreto de Alumínio , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Donepezila/farmacologia , Donepezila/uso terapêutico , Galactose , Glutationa Peroxidase/metabolismo , Hipocampo/metabolismo , Masculino , Malondialdeído/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
5.
Food Chem Toxicol ; 151: 112101, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33684518

RESUMO

Diosgenin (DG) isolated from yam roots revealed various bioactivities and applications as drug carrier. In the present study, a conjugate of DG with cytarabine (Ara-C) was used to prepare the self-assembled nanoparticles (NPs) of DG-Ara-C by a nanoprecipitation method. Dynamic light scattering (DLS) as well as transmission electron microscopy (TEM) were employed to analyze the size and the morphology of NPs, respectively. The stability and absorption of DG-Ara-C NPs were measured. Additionally, the cytotoxicity of the NPs was determined via MTT assay. The results indicated that the average particle size of DG-Ara-C NPs was around 190 nm with a narrow size distribution (PDI = 0.1). TEM showed that DG-Ara-C NPs had a spherical morphology. Compared to free DG or Ara-C, the self-assembled DG-Ara-C NPs exhibited a better anti-tumor activity against solid tumor cells as well as leukemia cells. In conclusion, DG possesses dual role in the self-assembled NPs of DG-Ara-C conjugate, being as a promising anticancer drug and drug carrier.


Assuntos
Antimetabólitos Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Citarabina/química , Diosgenina/química , Nanopartículas/química , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citarabina/administração & dosagem , Citarabina/farmacologia , Diosgenina/administração & dosagem , Diosgenina/farmacologia , Portadores de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
6.
Food Chem Toxicol ; 148: 111920, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33346046

RESUMO

Diosgenin (DG), a steroidal saponin, is mainly found in yam tubers. DG and its derivatives displayed significant pharmacological activities against inflammatory, hyperlipidemia, and various cancers. DG was selected to modify the cancer chemotherapeutic agent cytarabine (Ara-C) due to its anti-tumor activities as well as lipophilicity. After characterization, the biomembrane affinity and the kinetic thermal processes of the obtained DG-Ara-C conjugate were evaluated by differential scanning calorimetry (DSC). Thin hydration method with sonication was applied to prepare the DG-Ara-C liposomes without cholesterol since the DG moiety has the similar basic structure with cholesterol with more advantages. Dynamic Light Scattering (DLS) analysis and cytotoxic analysis were employed to characterize the DG-Ara-C liposomes and investigate their biological activities, respectively. The results indicated that DG changed the biomembrane affinity of Ara-C and successfully replaced the cholesterol during the liposome preparation. The DG-Ara-C liposomes have an average particle size of around 116 nm with a narrow size distribution and revealed better anti-cancer activity against leukemia cells and solid tumor cells than that of free DG or Ara-C. Therefore, it can be concluded that DG displayed the potential application as an anti-cancer drug carrier to improve the bio-activities, since DG counted for a critical component in modulating the biomembrane affinity, preparation of liposome, and release of hydrophilic Ara-C from lipid vesicles.


Assuntos
Antineoplásicos/farmacologia , Citarabina/análogos & derivados , Citarabina/farmacologia , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citarabina/síntese química , Diosgenina/síntese química , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos/síntese química , Lipossomos/farmacologia
7.
Int J Biol Macromol ; 146: 887-896, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669658

RESUMO

In this study, four sequentially extracted polysaccharides (AEPs) from Amana edulis were modified by sulphation, phosphorylation, and carboxylation modifications (S-AEPs, P-AEPs, C-AEPs), and compared for their anti-oxidant activities. After modification, sugar and protein contents were decreased and uronic acid content was increased in comparison to native AEPs. UV absorption showed similar maximum absorption peaks of modified derivatives which indicated their homogeneous nature. FTIR spectra confirmed the conversion of hydroxyl groups to OS, COO, and POH bonds, respectively. The phosphorylated derivatives (P-AEPs) displayed the highest DPPH, hydroxyl radical, and ferrous ions radical scavenging abilities. Sulfated polysaccharides (S-AEPs) were observed with high reducing ability. The C-AEPs maintained the stable antioxidant properties after carboxylation modification. Our results indicated that the chemical modification of different polysaccharide components has significantly affected their antioxidant potential for their use in food industry and human health.


Assuntos
Antioxidantes/farmacologia , Liliaceae/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Sulfatos/química , Benzotiazóis/química , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/farmacologia , Quelantes de Ferro/farmacologia , Oxirredução , Fosforilação , Picratos/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Sulfônicos/química
8.
Food Chem Toxicol ; 131: 110580, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202938

RESUMO

In present study, the acute, genetic, and sub-chronic toxicities of flaxseed derived Maillard reaction products (MRPs) were investigated. Acute toxicity results showed that the 50% lethal dose (LD50) of MRPs in rats was >15.0 g/kg body weight (BW); whereas, the 50% effective dose (ED50) of MRPs was 12.3 g/kg BW. Ames test demonstrated that the back-mutation colonies for MRPs addition of 5,000 µg/dish was positive, which displayed certain mutagenicity. There were no significant differences in micronucleus rate and sperm deformity rate among different dose groups. The sub-chronic toxicity confirmed that less than 0.75 gMRPs/kg BW intake did not affect weight, food intake, mortality, gross pathology, histology, hematology, and serum biochemistry. The obtained results can provide an imperative reference on the safety of a meat flavoring agents.


Assuntos
Linho/química , Produtos Finais de Glicação Avançada/toxicidade , Sementes/química , Alanina Transaminase/metabolismo , Animais , Medula Óssea/patologia , Feminino , Rim/patologia , Fígado/patologia , Masculino , Camundongos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
9.
J Agric Food Chem ; 67(12): 3341-3353, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30835110

RESUMO

The present study explored the molecular mechanism by which licochalcone B induces the cell cycle arrest and apoptosis in human hepatoma cell HepG2. Initial extraction and identification were performed by HPLC, UPLC-TOF-MS/MS, and NMR analysis, respectively. Licochalcone B inhibited the HepG2 growth with IC50 (110.15 µM) after 24 h, caused morphological distortion, and seized the cell cycle in the G2/M phase (cell arrest in G2/M:43.1 ± 2.2% for 120 µM versus 23.7 ± 1.2% for control), as well as induced apoptosis and intracellular ROS generation. Furthermore, exposure to licochalcone B markedly affected the cell cycle (up/down regulation) at mRNA and protein levels. Apoptosis was induced through the activation of receptor-mediated and mitochondrial pathways. The inhibition of Caspase 8 and Caspase 9 proteins abolished the licochalcone B induced apoptosis. The present work suggested that licochalcone B may further be identified as a potent functional food component with specific health benefits.


Assuntos
Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Glycyrrhiza uralensis/química , Neoplasias Hepáticas/fisiopatologia , Extratos Vegetais/farmacologia , Caspase 9/genética , Caspase 9/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/análise , Chalconas/isolamento & purificação , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química
10.
Int J Mol Sci ; 13(2): 2354-2367, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22408458

RESUMO

Supercritical carbon dioxide (SC-CO(2)) extraction of oil from oak silkworm pupae was performed in the present research. Response surface methodology (RSM) was applied to optimize the parameters of SC-CO(2) extraction, including extraction pressure, temperature, time and CO(2) flow rate on the yield of oak silkworm pupal oil (OSPO). The optimal extraction condition for oil yield within the experimental range of the variables researched was at 28.03 MPa, 1.83 h, 35.31 °C and 20.26 L/h as flow rate of CO(2). Under this condition, the oil yield was predicted to be 26.18%. The oak silkworm pupal oil contains eight fatty acids, and is rich in unsaturated fatty acids and α-linolenic acid (ALA), accounting for 77.29% and 34.27% in the total oil respectively.


Assuntos
Bombyx/química , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Ácidos Graxos/isolamento & purificação , Pupa/química , Animais , Calibragem , Cromatografia com Fluido Supercrítico/normas , Ácidos Graxos/análise , Pressão , Quercus/parasitologia , Temperatura
11.
Bioresour Technol ; 100(18): 4214-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19414250

RESUMO

Supercritical carbon dioxide extraction (SC-CO(2)) of oil from desilked silkworm pupae was performed. Response surface methodology (RSM) was applied to optimize the parameters of SC-CO(2) extraction. The effects of independent variables, including pressure, temperature, CO(2) flow rate, and extraction time, on the yield of oil were investigated. The statistical analysis showed that the pressure, extraction time, and the quadratics of pressure, extraction time, and CO(2) flow rate, as well as the interactions between pressure and temperature, and temperature and flow rate, showed significant effects on oil yield. The optimal extraction condition for oil yield within the experimental range of the variables researched was at 324.5 bar, 39.6 degrees C, 131.2 min, and 19.3 L/h. At this condition, the yield of oil was predicted to be 29.73%. The obtained silkworm pupal oil contained more than 68% total unsaturated fatty acids, and alpha-linolenic acid (ALA) accounted for 27.99% in the total oil.


Assuntos
Bombyx/crescimento & desenvolvimento , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Óleos/isolamento & purificação , Pupa/química , Animais , Ácidos Graxos/análise , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA