Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
ACS Nano ; 17(18): 18548-18561, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37706454

RESUMO

Replication stress (RS) induced by DNA damage plays a significant role in conferring the anticancer effects of radiotherapy and is tightly associated with radioresistance of cancer cells. Amplification of RS represents an effective approach to improving the efficacy of radiotherapy, although the development of selective RS amplifiers remains an unexplored frontier. We herein present an RS nano amplifier (RSNA) consisting of a catalytic FePt nanoparticle loaded with the chemotherapeutic doxorubicin (DOX), which selectively exacerbates RS in cancer cells by promoting replication fork (RF) catastrophe. RSNA converts the excessive reactive oxygen species (ROS) in cancer cells into oxygen, enhancing the DNA-damaging effects of radiotherapy to create more template lesions that impede RF progression in coalition with DOX. After radiation, ROS scavenging by RSNA accelerates RF progression through damaged template strands, increasing the frequency of RF collapse into double-strand breaks. Moreover, pretreatment with RSNA accumulates cancer cells in the S phase, exposing more RFs to radiation-induced RS. These effects of RSNA convergently maximize RS in cancer cells, effectively overcoming the radioresistance of cancer cells without affecting normal cells. Our study demonstrates the feasibility of selectively amplifying RS to boost radiotherapy.


Assuntos
Neoplasias , Humanos , Espécies Reativas de Oxigênio , Divisão Celular , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Catálise , Dano ao DNA , Doxorrubicina/farmacologia
2.
Zhongguo Gu Shang ; 35(11): 1060-4, 2022 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-36415192

RESUMO

OBJECTIVE: To investigate the relationship between serum C1q/tumor necrosis factor-related protein-3(CTRP3) and peroxisome proliferator-activated receptor γ coactivator-1α(PGC-1α) on predictive value of expression level on fracture healing. METHODS: From January 2019 to January 2020, 80 patients with traumatic tibial plateau fractures were treated by internal fixation with support plates through the posterior approach of the knee joint. The patients were followed up for 12 months. According to the criteria for delayed fracture healing, the patients were divided into two groups:54 patients in fracture healing group included 24 males and 30 females, aged 29 to 75 years old with an average of (52.36±13.17) years;In the delayed healing group, there were 26 cases, 13 males and 13 females, aged from 29 to 75 with an average od (53.82±13.52) years. The serum levels of CTRP3, PGC-1αand 25 hydroxyvitamin D3[25(OH)D3] in patients with traumatic fracture were detected by enzyme-linked immunosorbent assay(ELISA);Blood phosphorus and calcium levels were measured by automatic biochemical analyzer, and the product of calcium and phosphorus was calculated;Pearson's method was used to analyze the correlation between serum CTRP3, PGC-1αand bone biochemical indexes in patients with delayed union one week after operation;The predictive value of serum levels of CTRP3 and PGC-1αon traumatic fracture healing was analyzed by receiver operating characteristic curve(ROC curve). RESULTS: PGC-1α, calcium phosphorus product and 25(OH)D3 in the fracture healing group were higher than those in the delayed healing group at 1 and 4 weeks after operation(P<0.05). Serum CTRP3 was positively correlated with PGC-1α(r=0.637, P<0.05) and positively correlated with calcium phosphorus product and 25(OH)D3(P<0.05). The areas under the curve(AUC) of serum ctrp3 and PGC-1α levels in predicting traumatic fracture healing were 0.845 and 0.855, respectively. The cutoff values were 188.678 pg/ml and 2.697 ng/ml, respectively. The specificity was 96.2% and 80.8%, and the sensitivity was 53.7% and 77.8%;The predicted AUC was 0.904, the specificity was 88.5%, and the sensitivity was 81.5%. CONCLUSION: The serum levels of CTRP3 and PGC-1 in patients with delayed union of traumatic fracture at 1 and 4 weeks after operation α The expression level is of certain reference value to predict the fracture healing status of patients.


Assuntos
Consolidação da Fratura , Fraturas da Tíbia , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Cálcio , Fraturas da Tíbia/cirurgia , Osso e Ossos , Fósforo
3.
Natl Sci Rev ; 9(7): nwac080, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35832777

RESUMO

Although molecular imaging probes have the potential to non-invasively diagnose a tumor, imaging probes that can detect a tumor and simultaneously identify tumor malignancy remain elusive. Here, we demonstrate a potassium ion (K+) sensitive dual-mode nanoprobe (KDMN) for non-invasive tumor imaging and malignancy identification, which operates via a cascaded 'AND' logic gate controlled by inputs of magnetic resonance imaging (MRI) and fluorescence imaging (FI) signals. We encapsulate commercial K+ indicators into the hollow cavities of magnetic mesoporous silica nanoparticles, which are subsequently coated with a K+-selective membrane that exclusively permits the passage of K+ while excluding other cations. The KDMN can readily accumulate in tumors and enhance the MRI contrast after systemic administration. Spatial information of the tumor lesion is thus accessible via MRI and forms the first layer of the 'AND' gate. Meanwhile, the KDMN selectively captures K+ and prevents interference from other cations, triggering a K+-activated FI signal as the second layer of the 'AND' gate in the case of a malignant tumor with a high extracellular K+ level. This dual-mode imaging approach effectively eliminates false positive or negative diagnostic results and allows for non-invasive imaging of tumor malignancy with high sensitivity and accuracy.

4.
Front Genet ; 13: 906957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669181

RESUMO

Common fragile sites (CFSs) are specific genomic loci prone to forming gaps or breakages upon replication perturbation, which correlate well with chromosomal rearrangement and copy number variation. CFSs have been actively studied due to their important pathophysiological relevance in different diseases such as cancer and neurological disorders. The genetic locations and sequences of CFSs are crucial to understanding the origin of such unstable sites, which require reliable mapping and characterizing approaches. In this review, we will inspect the evolving techniques for CFSs mapping, especially genome-wide mapping and sequencing of CFSs based on current knowledge of CFSs. We will also revisit the well-established hypotheses on the origin of CFSs fragility, incorporating novel findings from the comprehensive analysis of finely mapped CFSs regarding their locations, sequences, and replication/transcription, etc. This review will present the most up-to-date picture of CFSs and, potentially, a new framework for future research of CFSs.

5.
Nanomicro Lett ; 14(1): 101, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35412159

RESUMO

The structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes. However, there is virtually no artificial nanozyme reported that can achieve natural enzyme-like stringent spatiotemporal structure-based catalytic activity regulation. Here, we report a sub-nanostructural transformable gold@ceria (STGC-PEG) nanozyme that performs tunable catalytic activities via near-infrared (NIR) light-mediated sub-nanostructural transformation. The gold core in STGC-PEG can generate energetic hot electrons upon NIR irradiation, wherein an internal sub-nanostructural transformation is initiated by the conversion between CeO2 and electron-rich state of CeO2-x, and active oxygen vacancies generation via the hot-electron injection. Interestingly, the sub-nanostructural transformation of STGC-PEG enhances peroxidase-like activity and unprecedentedly activates plasmon-promoted oxidase-like activity, allowing highly efficient low-power NIR light (50 mW cm-2)-activated photocatalytic therapy of tumors. Our atomic-level design and fabrication provide a platform to precisely regulate the catalytic activities of nanozymes via a light-mediated sub-nanostructural transformation, approaching natural enzyme-like activity control in complex living systems.

6.
Nat Commun ; 12(1): 3840, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158498

RESUMO

Histopathological level imaging in a non-invasive manner is important for clinical diagnosis, which has been a tremendous challenge for current imaging modalities. Recent development of ultra-high-field (UHF) magnetic resonance imaging (MRI) represents a large step toward this goal. Nevertheless, there is a lack of proper contrast agents that can provide superior imaging sensitivity at UHF for disease detection, because conventional contrast agents generally induce T2 decaying effects that are too strong and thus limit the imaging performance. Herein, by rationally engineering the size, spin alignment, and magnetic moment of the nanoparticles, we develop an UHF MRI-tailored ultra-sensitive antiferromagnetic nanoparticle probe (AFNP), which possesses exceptionally small magnetisation to minimize T2 decaying effect. Under the applied magnetic field of 9 T with mice dedicated hardware, the nanoprobe exhibits the ultralow r2/r1 value (~1.93), enabling the sensitive detection of microscopic primary tumours (<0.60 mm) and micrometastases (down to 0.20 mm) in mice. The sensitivity and accuracy of AFNP-enhanced UHF MRI are comparable to those of the histopathological examination, enabling the development of non-invasive visualization of previously undetectable biological entities critical to medical diagnosis and therapy.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Magnetismo , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Neoplasias/patologia , Células RAW 264.7 , Ratos Wistar , Transplante Heterólogo
7.
Nat Commun ; 12(1): 2346, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879767

RESUMO

Cancer expression of PD-L1 suppresses anti-tumor immunity. PD-L1 has emerged as a remarkable therapeutic target. However, the regulation of PD-L1 degradation is not understood. Here, we identify several compounds as inducers of PD-L1 degradation using a high-throughput drug screen. We find EGFR inhibitors promote PD-L1 ubiquitination and proteasomal degradation following GSK3α-mediated phosphorylation of Ser279/Ser283. We identify ARIH1 as the E3 ubiquitin ligase responsible for targeting PD-L1 to degradation. Overexpression of ARIH1 suppresses tumor growth and promotes cytotoxic T cell activation in wild-type, but not in immunocompromised mice, highlighting the role of ARIH1 in anti-tumor immunity. Moreover, combining EGFR inhibitor ES-072 with anti-CTLA4 immunotherapy results in an additive effect on both tumor growth and cytotoxic T cell activation. Our results delineate a mechanism of PD-L1 degradation and cancer escape from immunity via EGFR-GSK3α-ARIH1 signaling and suggest GSK3α and ARIH1 might be potential drug targets to boost anti-tumor immunity and enhance immunotherapies.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antígeno B7-H1/química , Antígeno CTLA-4/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Neoplasias/terapia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Evasão Tumoral/fisiologia , Células U937 , Ubiquitinação/efeitos dos fármacos
8.
Nat Commun ; 12(1): 1436, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664241

RESUMO

Acute kidney injury (AKI) is a prevalent and lethal adverse event that severely affects cancer patients receiving chemotherapy. It is correlated with the collateral damage to renal cells caused by reactive oxygen species (ROS). Currently, ROS management is a practical strategy that can reduce the risk of chemotherapy-related AKI, but at the cost of chemotherapeutic efficacy. Herein, we report catalytic activity tunable ceria nanoparticles (CNPs) that can prevent chemotherapy-induced AKI without interference with chemotherapeutic agents. Specifically, in the renal cortex, CNPs exhibit catalytic activity that decomposes hydrogen peroxide, and subsequently regulate the ROS-involved genes by activating the Nrf2/Keap1 signaling pathway. These restore the redox homeostasis for the protection of kidney tubules. Under an acidic tumor microenvironment, CNPs become inert due to the excessive H+ that disrupts the re-exposure of active catalytic sites, allowing a buildup of chemotherapy-mediated ROS generation to kill cancer cells. As ROS-modulating agents, CNPs incorporated with context-dependent catalytic activity, hold a great potential for clinical prevention and treatment of AKI in cancer patients.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antineoplásicos/efeitos adversos , Cério/farmacologia , Túbulos Renais/patologia , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Animais , Antineoplásicos/uso terapêutico , Domínio Catalítico , Linhagem Celular Tumoral , Cério/química , Feminino , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral
9.
Adv Sci (Weinh) ; 7(19): 2001041, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33042742

RESUMO

High-throughput gene sequencing has identified various genetic variants as the culprits for some common hereditary cancers. However, the heritability of a substantial proportion of cancers remains unexplained, which may result from rare deleterious mutations hidden in a myriad of nonsense genetic variations. This poses a great challenge to the understanding of the pathology and thus the rational design of effective treatments for affected patients. Here, whole genome sequencing is employed in a representative case in which one monozygotic twin is discordant for lung inflammatory myofibroblastoma to disclose rare tumor-related mutations. A missense single nucleotide variation rs61955126 T>C in the lysine methyltransferase SETD8 (accession: NM_020382, SETD8C302R ) is exposed. It is shown that SETD8 is vital for genomic integrity by promoting faithful DNA replication, and its C302R mutation downregulates the p53/p21 pathway. Importantly, the SETD8C302R mutation significantly increases the sensitivity of cancer cells to WEE1 inhibition. Given that WEE1 inhibitors have shown great promise for clinical approval, these results impart a potential therapeutic approach using WEE1 inhibitor for cancer patients carrying the same mutation, and indicate that genome sequencing and genetic functional studies can be integrated into individualized therapies.

10.
Cell Discov ; 6: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550000

RESUMO

Aberrant activation of Wnt/ß-catenin signaling has been associated with the onset and progression of many types of tumors and thus ß-catenin represents one attractive intracellular target for cancer therapy. Based on the Axin-derived peptide that binds to ß-catenin, two stapled peptides SAHPA1 and xStAx were reported to enhance or impair Wnt/ß-catenin signaling, respectively. In this study, we designed PROTACs (proteolysis targeting chimeras) by coupling SAHPA1 or xStAx with the VHL ligand to achieve efficient ß-catenin degradation. The obtained xStAx-VHLL sustained ß-catenin degradation and manifested strong inhibition of Wnt signaling in cancer cells and in APC-/- organoids. Furthermore, xStAx-VHLL could effectively restrain tumor formation in BALB/C nude mice, and diminish the existing tumors in APCmin/+ mice. More importantly, xStAx-VHLL could potently inhibit the survival of colorectal cancer patient-derived organoids. These findings suggest that xStAx-VHLL exhibits the ability of cancer prevention and cure, highlighting the potential of ß-catenin degrader PROTACs as a new class of promising anticancer agent.

11.
Cell Res ; 30(11): 1009-1023, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32561861

RESUMO

Common fragile sites (CFSs) are genomic loci prone to the formation of breaks or gaps on metaphase chromosomes. They are hotspots for chromosome rearrangements and structural variations, which have been extensively implicated in carcinogenesis, aging, and other pathological processes. Although many CFSs were identified decades ago, a consensus is still lacking for why they are particularly unstable and sensitive to replication perturbations. This is in part due to the lack of high-resolution mapping data for the vast majority of the CFSs, which has hindered mechanistic interrogations. Here, we seek to map human CFSs with high resolution on a genome-wide scale by sequencing the sites of mitotic DNA synthesis (MiDASeq) that are specific for CFSs. We generated a nucleotide-resolution atlas of MiDAS sites (MDSs) that covered most of the known CFSs, and comprehensively analyzed their sequence characteristics and genomic features. Our data on MDSs tallied well with long-standing hypotheses to explain CFS fragility while highlighting the contributions of late replication timing and large transcription units. Notably, the MDSs also encompassed most of the recurrent double-strand break clusters previously identified in mouse neural stem/progenitor cells, thus bridging evolutionarily conserved break points across species. Moreover, MiDAseq provides an important resource that can stimulate future research on CFSs to further unravel the mechanisms and biological relevance underlying these labile genomic regions.


Assuntos
Sítios Frágeis do Cromossomo/genética , Mapeamento Cromossômico , DNA/biossíntese , Genoma Humano , Análise de Sequência de DNA , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/genética , Período de Replicação do DNA/genética , Epigenoma , Ontologia Genética , Variação Genética , Instabilidade Genômica , Humanos , Repetições Minissatélites/genética , Anotação de Sequência Molecular , Transcrição Gênica
12.
Small ; 16(31): e2002537, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519453

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive and insensitive to conventional targeted therapies, resulting in poor therapeutic outcomes. Recent studies have shown that abnormal iron metabolism is observed in TNBC, suggesting an opportunity for TNBC treatment via the iron-dependent Fenton reaction. Nevertheless, the efficiency of current Fenton reagents is largely restricted by the lack of specificity and low intracellular H2 O2 level of cancer cells. Herein, core-shell-satellite nanomaces (Au @ MSN@IONP) are fabricated, as near-infrared (NIR) light-triggered self-fueling Fenton reagents for the amplified Fenton reaction inside TNBC cells. Specifically, the Au nanorod core can convert NIR light energy into heat to induce massive production of intracellular H2 O2 , thereby the surface-decorated iron oxide nanoparticles (IONP) are being fueled for robust Fenton reaction. By exploiting the vulnerability of iron efflux in TNBC cells, such a self-fueling Fenton reaction leads to highly specific anti-TNBC efficacy with minimal cytotoxicity to normal cells. The PI3K/Akt/FoxO axis, intimately involved in the redox regulation and survival of TNBC, is demonstrated to be inhibited after the treatment. Consequently, precise in vivo orthotopic TNBC ablation is achieved under the guidance of IONP-enhanced magnetic resonance imaging. The results demonstrate the proof-of-concept of NIR-light-triggered self-fueling Fenton reagents against TNBC with low ferroportin levels.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Ferro , Fosfatidilinositol 3-Quinases , Neoplasias de Mama Triplo Negativas/terapia
13.
Mol Cell ; 78(4): 714-724.e5, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32353258

RESUMO

Nonrandom DNA segregation (NDS) is a mitotic event in which sister chromatids carrying the oldest DNA strands are inherited exclusively by one of the two daughter cells. Although this phenomenon has been observed across various organisms, the mechanism and physiological relevance of this event remain poorly defined. Here, we demonstrate that DNA replication stress can trigger NDS in human cells. This biased inheritance of old template DNA is associated with the asymmetric DNA damage response (DDR), which derives at least in part from telomeric DNA. Mechanistically, we reveal that the ATR/CHK1 signaling pathway plays an essential role in mediating NDS. We show that this biased segregation process leads to cell-cycle arrest and cell death in damaged daughter cells inheriting newly replicated DNA. These data therefore identify a key role for NDS in the maintenance of genomic integrity within cancer cell populations undergoing replication stress due to oncogene activation.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Cromossomos Humanos/genética , Dano ao DNA , Replicação do DNA , Mitose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase 1 do Ponto de Checagem/genética , Segregação de Cromossomos , Células HeLa , Humanos , Transdução de Sinais
14.
J Control Release ; 322: 566-592, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276006

RESUMO

Stimuli-responsive nano-assemblies are emerging as promising drug delivery systems (DDSs) with spatial and temporal tenability, which can undergo structural transition for controlled drug release upon excitation by either exogenous or endogenous stimuli. Particularly, exogenous stimuli-responsive nano-assemblies based remotely controlled DDSs, have received much attention due to their accuracy and reliability realized by tunable exogenous triggers such as light, magnetic field, or temperature. In this review, we will briefly introduce the current state-of-the-art technologies of nano-assembly synthesis and summarize the recent advances in remotely controlled nano-assembly-based DDSs activated by different exogenous stimuli or endogenous/exogenous dual-stimuli. Furthermore, the pioneering progress in bio-cleanable stimuli-responsive nano-assemblies that holds great relevance to clinical translation will be described. Finally, we will conclude with our perspectives on current issues and future development of this field. The objective of this review is to outline current advances of nano-assemblies as remotely controlled DDSs, in hopes of accelerating the future development of intelligent nanomedicines.


Assuntos
Nanopartículas , Neoplasias , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Reprodutibilidade dos Testes
15.
ACS Nano ; 14(2): 2053-2062, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31999433

RESUMO

Stem cell therapies are increasingly recognized as the future direction of regenerative medicine, but the biological fate of the administrated stem cells remains a major concern for clinical translation, which calls for an approach to efficiently monitoring the stem cell behaviors in vivo. Magnetic particle imaging (MPI) is an emerging technology for cell tracking; however, its utility has been largely restricted due to the lack of optimal magnetic nanoparticle tracers. Herein, by controlled engineering of the size and shape of magnetic nanoparticles tailored to MPI physics theory, a specialized MPI tracer, based on cubic iron oxide nanoparticles with an edge length of 22 nm (CIONs-22), is developed. Due to the inherent lower proportion of disordered surface spins, CIONs-22 exhibit significantly larger saturation magnetization than that of spherical ones, while they possess similar saturation magnetization but smaller coercivity compared to larger-sized CIONs. These magnetic properties of CIONs-22 warrant high sensitivity and resolution of MPI. With their efficient cellular uptake, CIONs-22 exhibit superior MPI performance for stem cell labeling and tracking compared to the commercialized tracer Vivotrax. By virtue of these advantages, CIONs-22 enable real-time and prolonged monitoring of the spatiotemporal trajectory of stem cells transplanted to hindlimb ischemia mice, which demonstrates the great potential of CIONs-22 as MPI tracers to advance stem cell therapies.


Assuntos
Rastreamento de Células , Membro Posterior/patologia , Isquemia/patologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Imagem Óptica , Células-Tronco/citologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
16.
Oncol Lett ; 17(6): 5839-5840, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31186812

RESUMO

[This corrects the article DOI: 10.3892/ol.2017.6940.].

17.
ACS Nano ; 13(6): 6801-6812, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31141658

RESUMO

Gadolinium-based contrast agents (GBCAs) are widely used for T1-weighted magnetic resonance imaging (MRI) in clinic diagnosis. However, a major drawback of GBCAs is that they can increase the toxicological risk of nephrogenic systemic fibrosis (NSF) in patients with advanced renal dysfunction. Hence, safer alternatives to GBCAs are currently in demand, especially for patients with renal diseases. Here we investigated the potential of polyethylene glycol (PEG)-stabilized iron oxide nanoclusters (IONCs) as biocompatible T1MRI contrast agents and systematically evaluated their NSF-related risk in rats with renal failure. We profiled the distribution, excretion, histopathological alterations, and fibrotic gene expressions after administration of IONCs and GBCAs. Our results showed that, compared with GBCAs, IONCs exhibited dramatically improved biosafety and a much lower risk of causing NSF, suggesting the feasibility of substituting GBCAs with IONCs in clinical MRI diagnosis of patients with renal diseases.


Assuntos
Meios de Contraste/toxicidade , Compostos Férricos/química , Gadolínio/química , Nanoestruturas/química , Insuficiência Renal/diagnóstico por imagem , Animais , Meios de Contraste/química , Meios de Contraste/farmacocinética , Células HEK293 , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Camundongos , Dermopatia Fibrosante Nefrogênica/etiologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
18.
Sci Bull (Beijing) ; 64(24): 1850-1874, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659581

RESUMO

Age-related diseases (ARDs) are arising as a major threat to public health in our fast-aging society. Current development of nanomedicine has sparked much optimism toward ARDs management by improving drug delivery and controlled drug release. However, effective treatments for ARDs, such as cancer and Alzheimer's diseases (AD), are still lacking, due to the complicated pathological features of ARDs including multifactorial pathogenesis, intricate disease microenvironment, and dynamic symptom manifestation. Recently, dynamic supraparticles (DS), which are reversibly self-assembled functional nanoparticles, have provided a novel strategy for combating ARDs. Besides the intrinsic advantages of nanomedicine including multifunctional and multitarget, DS are capable of dynamic structural reconfiguration upon certain stimulation, creating another layer of maneuverability that allows programmed response to the spatiotemporal alterations of ARDs during progression and treatment. In this review, we will overview the challenges faced by ARDs management, and discuss the unique opportunities brought by DS. Then, we will summarize the designed synthesis of DS for ARDs treatment. Finally, we will dissect the therapeutic targets in ARDs that can be exploited by DS, and present the encouraging advances in this field. Hopefully, this review will bridge our knowledge of the design principle of DS and ARDs management, which may inspire the future development of potent theranostic agents to improve the healthcare.

19.
ACS Nano ; 12(12): 12380-12392, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30495919

RESUMO

Ferroptosis, an iron-based cell-death pathway, has recently attracted great attention owing to its effectiveness in killing cancer cells. Previous investigations focused on the development of iron-based nanomaterials to induce ferroptosis in cancer cells by the up-regulation of reactive oxygen species (ROS) generated by the well-known Fenton reaction. Herein, we report a ferroptosis-inducing agent based on arginine-rich manganese silicate nanobubbles (AMSNs) that possess highly efficient glutathione (GSH) depletion ability and thereby induce ferroptosis by the inactivation of glutathione-dependent peroxidases 4 (GPX4). The AMSNs were synthesized via a one-pot reaction with arginine (Arg) as the surface ligand for tumor homing. Subsequently, a significant tumor suppression effect can be achieved by GSH depletion-induced ferroptosis. Moreover, the degradation of AMSNs during the GSH depletion contributed to T1-weighted magnetic resonance imaging (MRI) enhancement as well as on-demand chemotherapeutic drug release for synergistic cancer therapy. We anticipate that the GSH-depletion-induced ferroptosis strategy by using manganese-based nanomaterials would provide insights in designing nanomedicines for tumor-targeted theranostics.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arginina/química , Doxorrubicina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Nanomedicina Teranóstica , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Imageamento por Ressonância Magnética , Manganês/química , Silicatos/síntese química , Silicatos/química
20.
Cancer Res ; 78(21): 6073-6085, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171053

RESUMO

TGFß signaling inhibits cell proliferation to block cancer initiation, yet it also enhances metastasis to promote malignancy during breast cancer development. The mechanisms underlying these differential effects are still unclear. Here, we report that HER2/EGFR signaling switches TGFß function in breast cancer cells from antiproliferation to cancer promotion. Inhibition of HER2/EGFR activity attenuated TGFß-induced epithelial-mesenchymal transition and migration but enhanced the antiproliferative activity of TGFß. Activation of HER2/EGFR induced phosphorylation of Smad3 at Ser208 of the linker region through AKT, which promoted the nuclear accumulation of Smad3 and subsequent expression of the genes related to EMT and cell migration. In contrast, HER2/EGFR signaling had no effects on the nuclear localization of Smad2. Knockdown of Smad3, but not Smad2, blocked TGFß-induced breast cancer cell migration. We observed a positive correlation between the nuclear localization of Smad3 and HER2 activation in advanced human breast cancers. Our results demonstrate a key role for HER2/EGFR in differential regulation of Smad3 activity to shift TGFß function from antitumorigenic to protumorigenic during breast cancer development.Significance: TGFß signaling can shift from inhibiting to promoting breast cancer development via HER2/EGFR AKT-mediated phosphorylation of Smad3 at S208, enhancing its nuclear accumulation and upregulation of EMT-related genes.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6073/F1.large.jpg Cancer Res; 78(21); 6073-85. ©2018 AACR.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Idoso , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Fosforilação , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA