Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998596

RESUMO

Reasonable application of nitrogen fertilizer can improve the yield and quality of tea. This study used Jin Xuan as the tested variety and applied nitrogen fertilizer at rates of 0 kg/ha (N0), 150 kg/ha (N150), 300 kg/ha (N300), and 450 kg/ha (N450) in the summer and autumn seasons to analyze the effects of nitrogen application on the quality components and gene expression of tea leaves. The results showed that the N150 treatment significantly increased total polyphenols (TP), total catechins (TC), and caffeine contents, with the most significant increase observed in the content of six monomers of catechins (EGCG, ECG, EGC, GCG, GC, and EC) in the summer. The N300 treatment significantly increased TP and AA contents in the autumn while decreasing TC content. Additionally, the N300 treatment significantly increased caffeine and theanine contents in the autumn. Notably, the N300 treatment significantly increased both summer and autumn tea yields. Multivariate statistical analysis showed that TPs, AAs, TCs, EGC, and caffeine were key factors affecting the quality of Jin Xuan. Furthermore, the N150 treatment upregulated the expression of the phenylalanine ammonia-lyase (PAL) gene, which may increase the accumulation of catechins. In conclusion, it is recommended to apply 150 kg/ha of nitrogen fertilizer in the summer and 300 kg/ha of nitrogen fertilizer in the autumn. This recommendation provides a theoretical basis for improving the quality and yield of tea leaves in summer and autumn.

2.
Food Chem ; 439: 138127, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064834

RESUMO

Our study investigated the impact of nitrogen fertilization at 0, 150, 300, and 450 kg/ha on the non-volatile and volatile substances, as well as gene expression in fresh leaves from Lingtou tea plants. We found that applying nitrogen at 450 kg/ha notably increased total polyphenols (TPs) and free amino acids (AAs) while decreasing the TP to AA ratio (TP/AA) and total catechins (TC) contents. Chlorophyll, caffeine (CAF) and theanine accumulated to a greater extent with nitrogen application rates of 150, 300, and 450 kg/ha, respectively, six substances - TP, CAF, TC, theanine, epigallocatechin (EGC), and AA - as key contributors to the taste quality of LTDC. Additionally, five substances with variable importance in projections (VIP) ≥ 1 and odor activation values (OAV) ≥ 1, notably linalool and cis-linalool oxide (furanoid), significantly contributed to the tea's overall aroma. Furthermore, applying 300 kg/ha nitrogen upregulated the dihydroflavonol reductase (DFR)gene, likely causing catechin decrease.


Assuntos
Camellia sinensis , Catequina , Chá/química , Camellia sinensis/química , Nitrogênio/análise , Cafeína/análise , Catequina/química , Folhas de Planta/genética , Folhas de Planta/química , Fertilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA