Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 911, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670137

RESUMO

The immune synapse, a highly organized structure formed at the interface between T lymphocytes and antigen-presenting cells (APCs), is essential for T cell activation and the adaptive immune response. It has been shown that this interface shares similarities with the primary cilium, a sensory organelle in eukaryotic cells, although the roles of ciliary proteins on the immune synapse remain elusive. Here, we find that inositol polyphosphate-5-phosphatase E (INPP5E), a cilium-enriched protein responsible for regulating phosphoinositide localization, is enriched at the immune synapse in Jurkat T-cells during superantigen-mediated conjugation or antibody-mediated crosslinking of TCR complexes, and forms a complex with CD3ζ, ZAP-70, and Lck. Silencing INPP5E in Jurkat T-cells impairs the polarized distribution of CD3ζ at the immune synapse and correlates with a failure of PI(4,5)P2 clearance at the center of the synapse. Moreover, INPP5E silencing decreases proximal TCR signaling, including phosphorylation of CD3ζ and ZAP-70, and ultimately attenuates IL-2 secretion. Our results suggest that INPP5E is a new player in phosphoinositide manipulation at the synapse, controlling the TCR signaling cascade.


Assuntos
Anticorpos , Monoéster Fosfórico Hidrolases , Fosfatidilinositóis , Receptores de Antígenos de Linfócitos T
2.
Curr Biol ; 31(13): 2887-2894.e4, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33989524

RESUMO

Primary cilia are sensory organelles present on most vertebrate cells and are critical for development and health. Ciliary dysfunction is associated with a large class of human pathologies collectively known as ciliopathies. These include cystic kidneys, blindness, obesity, skeletal malformations, and other organ anomalies. Using a proximity biotinylation with Ift27 as bait, we identified the small guanosine triphosphatase (GTPase) Rab34 as a ciliary protein. Rab34 localizes to the centrosomes near the mother centriole, the axoneme of developed cilia, and highly dynamic tubule structures in the centrosomal region. Rab34 is required for cilia formation in fibroblasts, where we find that Rab34 loss blocks ciliogenesis at an early step of ciliary vesicle formation. In inner medullary collecting duct (IMCD3) epithelial cells, the requirement is more complex, with Rab34 needed in cells grown at low density but becoming less important as cell density increases. Ciliogenesis can proceed by an internal pathway where cilia form in the cytoplasm before being displayed on the ciliary surface or cilia can assemble by an external pathway where the centriole docks on the plasma membrane before ciliary assembly. Fibroblasts are thought to use the internal pathway, although IMCD3 cells are thought to use the external pathway. However, we find that IMCD3 cells can use the internal assembly pathway and significant numbers of internally assembling cilia are observed in low-density cells. Together, our work indicates that Rab34 is required for internal assembly of cilia, but not for cilia built on the cell surface.


Assuntos
Cílios/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Axonema/metabolismo , Linhagem Celular , Centríolos/metabolismo , Centrossomo/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camundongos
3.
Nat Commun ; 12(1): 2163, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846331

RESUMO

γδ T cells are a distinct subgroup of T cells that bridge the innate and adaptive immune system and can attack cancer cells in an MHC-unrestricted manner. Trials of adoptive γδ T cell transfer in solid tumors have had limited success. Here, we show that DNA methyltransferase inhibitors (DNMTis) upregulate surface molecules on cancer cells related to γδ T cell activation using quantitative surface proteomics. DNMTi treatment of human lung cancer potentiates tumor lysis by ex vivo-expanded Vδ1-enriched γδ T cells. Mechanistically, DNMTi enhances immune synapse formation and mediates cytoskeletal reorganization via coordinated alterations of DNA methylation and chromatin accessibility. Genetic depletion of adhesion molecules or pharmacological inhibition of actin polymerization abolishes the potentiating effect of DNMTi. Clinically, the DNMTi-associated cytoskeleton signature stratifies lung cancer patients prognostically. These results support a combinatorial strategy of DNMTis and γδ T cell-based immunotherapy in lung cancer management.


Assuntos
Citoesqueleto/metabolismo , Citotoxicidade Imunológica/genética , Epigênese Genética , Sinapses Imunológicas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Decitabina/farmacologia , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sinapses Imunológicas/efeitos dos fármacos , Marcação por Isótopo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos NOD , Fosfotirosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Proteome Res ; 18(7): 2813-2825, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31199160

RESUMO

Protein phosphorylation is a reversible post-translational modification that regulates many biological processes in almost all living forms. In the case of the hepatitis C virus (HCV), the nonstructural protein 5A (NS5A) is believed to transit between hypo- and hyper-phosphorylated forms that interact with host proteins to execute different functions; however, little was known about the proteins that bind either form of NS5A. Here, we generated two high-quality antibodies specific to serine 235 nonphosphorylated hypo- vs serine 235 phosphorylated (pS235) hyper-phosphorylated form of NS5A and for the first time segregated these two forms of NS5A plus their interacting proteins for dimethyl-labeling based proteomics. We identified 629 proteins, of which 238 were quantified in three replicates. Bioinformatics showed 46 proteins that preferentially bind hypo-phosphorylated NS5A are involved in antiviral response and another 46 proteins that bind pS235 hyper-phosphorylated NS5A are involved in liver cancer progression. We further identified a DNA-dependent kinase (DNA-PK) that binds hypo-phosphorylated NS5A. Inhibition of DNA-PK with an inhibitor or via gene-specific knockdown significantly reduced S232 phosphorylation and NS5A hyper-phosphorylation. Because S232 phosphorylation initiates sequential S232/S235/S238 phosphorylation leading to NS5A hyper-phosphorylation, we identified a new protein kinase that regulates a delicate balance of NS5A between hypo- and hyper-phosphorylation states, respectively, involved in host antiviral responses and liver cancer progression.


Assuntos
Hepacivirus/química , Proteômica/métodos , Proteínas não Estruturais Virais/metabolismo , Proteína Quinase Ativada por DNA/análise , Proteína Quinase Ativada por DNA/metabolismo , Hepatite C/complicações , Hepatite C/imunologia , Hepatite C/patologia , Humanos , Neoplasias Hepáticas/etiologia , Fosforilação , Ligação Proteica
5.
Mol Biol Cell ; 30(7): 828-837, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30759057

RESUMO

Primary cilia play a vital role in cellular sensing and signaling. An essential component of ciliogenesis is intraflagellar transport (IFT), which is involved in IFT protein recruitment, axonemal engagement of IFT protein complexes, and so on. The mechanistic understanding of these processes at the ciliary base was largely missing, because it is challenging to observe the motion of IFT proteins in this crowded region using conventional microscopy. Here, we report short-trajectory tracking of IFT proteins at the base of mammalian primary cilia by optimizing single-particle tracking photoactivated localization microscopy for IFT88-mEOS4b in live human retinal pigment epithelial cells. Intriguingly, we found that mobile IFT proteins "switched gears" multiple times from the distal appendages (DAPs) to the ciliary compartment (CC), moving slowly in the DAPs, relatively fast in the proximal transition zone (TZ), slowly again in the distal TZ, and then much faster in the CC. They could travel through the space between the DAPs and the axoneme without following DAP structures. We further revealed that BBS2 and IFT88 were highly populated at the distal TZ, a potential assembly site. Together, our live-cell single-particle tracking revealed region-dependent slowdown of IFT proteins at the ciliary base, shedding light on staged control of ciliary homeostasis.


Assuntos
Cílios/metabolismo , Microscopia de Fluorescência/métodos , Epitélio Pigmentado da Retina/diagnóstico por imagem , Animais , Axonema/metabolismo , Transporte Biológico/fisiologia , Proteínas de Transporte , Cílios/fisiologia , Flagelos/metabolismo , Células HEK293 , Humanos , Microscopia/métodos , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(2): 566-574, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587587

RESUMO

We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.


Assuntos
Trifosfato de Adenosina , Metabolismo Energético/genética , Homozigoto , Dinâmica Mitocondrial/genética , Nucleosídeo NM23 Difosfato Quinases , Doenças Neurodegenerativas , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Sobrevivência Celular , Feminino , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
7.
Biophys J ; 115(2): 263-275, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29866362

RESUMO

The primary cilium is an essential organelle mediating key signaling activities, such as sonic hedgehog signaling. The molecular composition of the ciliary compartment is distinct from that of the cytosol, with the transition zone (TZ) gated the ciliary base. The TZ is a packed and organized protein complex containing multiple ciliopathy-associated protein species. Tectonic 2 (TCTN2) is one of the TZ proteins in the vicinity of the ciliary membrane, and its mutation is associated with Meckel syndrome. Despite its importance in ciliopathies, the role of TCTN2 in ciliary structure and molecules remains unclear. Here, we created a CRISPR/Cas9 TCTN2 knockout human retinal pigment epithelial cell line and conducted quantitative analysis of geometric localization using both wide-field and super-resolution microscopy techniques. We found that TCTN2 depletion resulted in partial TZ damage, loss of ciliary membrane proteins, leakage of intraflagellar transport protein IFT88 toward the basal body lumen, and cilium shortening and curving. The basal body lumen occupancy of IFT88 was also observed in si-RPGRIP1L cells and cytochalasin-D-treated wild-type cells, suggesting varying lumen accessibility for intraflagellar transport proteins under different perturbed conditions. Our findings support two possible models for the lumen leakage of IFT88, i.e., a tip leakage model and a misregulation model. Together, our quantitative image analysis augmented by super-resolution microscopy facilitates the observation of structural destruction and molecular redistribution in TCTN2-/- cilia, shedding light on mechanistic understanding of TZ-protein-associated ciliopathies.


Assuntos
Cílios/metabolismo , Técnicas de Inativação de Genes , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Imagem Molecular , Proteínas Supressoras de Tumor/metabolismo , Humanos , Proteínas de Membrana/química , Domínios Proteicos , Transporte Proteico , Epitélio Pigmentado da Retina/citologia
8.
Nat Commun ; 9(1): 2023, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789620

RESUMO

Distal appendages (DAPs) are nanoscale, pinwheel-like structures protruding from the distal end of the centriole that mediate membrane docking during ciliogenesis, marking the cilia base around the ciliary gate. Here we determine a super-resolved multiplex of 16 centriole-distal-end components. Surprisingly, rather than pinwheels, intact DAPs exhibit a cone-shaped architecture with components filling the space between each pinwheel blade, a new structural element we term the distal appendage matrix (DAM). Specifically, CEP83, CEP89, SCLT1, and CEP164 form the backbone of pinwheel blades, with CEP83 confined at the root and CEP164 extending to the tip near the membrane-docking site. By contrast, FBF1 marks the distal end of the DAM near the ciliary membrane. Strikingly, unlike CEP164, which is essential for ciliogenesis, FBF1 is required for ciliary gating of transmembrane proteins, revealing DAPs as an essential component of the ciliary gate. Our findings redefine both the structure and function of DAPs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/ultraestrutura , Centríolos/ultraestrutura , Cílios/ultraestrutura , Proteínas dos Microtúbulos/ultraestrutura , Proteínas Associadas aos Microtúbulos/ultraestrutura , Canais de Sódio/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centríolos/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Edição de Genes , Expressão Gênica , Células HEK293 , Humanos , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Imagem Molecular , Multimerização Proteica , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Canais de Sódio/genética , Canais de Sódio/metabolismo
9.
Methods Mol Biol ; 1454: 169-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27514922

RESUMO

The characteristic lengths of molecular arrangement in primary cilia are below the diffraction limit of light, challenging structural and functional studies of ciliary proteins. Superresolution microscopy can reach up to a 20 nm resolution, significantly improving the ability to map molecules in primary cilia. Here we describe detailed experimental procedure of STED microscopy imaging and dSTORM imaging, two of the most powerful superresolution imaging techniques. Specifically, we emphasize the use of these two methods on imaging proteins in primary cilia.


Assuntos
Cílios/metabolismo , Microscopia/métodos , Imagem Molecular/métodos , Células Epiteliais/metabolismo , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
10.
Dev Cell ; 35(4): 418-31, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26609957

RESUMO

Axon extension at the growing tip requires elevated local protein supply, with a capability sustainable over long axons in varying environments. The exact mechanisms, however, remain elusive. Here we report that axon-promoting factors elicited a retrograde transport-dependent removal of proteasomes from nascent axon terminals, thereby increasing protein stability at axon tips. Such an effect occurred through phosphorylation of a dynein-interacting proteasome adaptor protein Ecm29. During the transition from immature neurites to nascent axons in cultured hippocampal neurons, live-cell imaging revealed a significant increase of the retrograde axonal transport of fluorescently labeled 20S proteasomes. This retrograde proteasome transport depended on neuron stage and increased with axon lengths. Blockade of retrograde transport caused accumulation of proteasomes, reduction of axon growth, and attenuation of growth-associated Par6 at the axon tip of newly polarized neurons. Our results delineate a regulatory mechanism that controls proteasome abundance via preferential transport required for axon development in newborn neurons.


Assuntos
Transporte Axonal/fisiologia , Axônios/fisiologia , Hipocampo/citologia , Neuritos/fisiologia , Neurônios/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , AMP Cíclico/farmacologia , Dineínas/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Hipocampo/metabolismo , Immunoblotting , Neurônios/metabolismo , Fosforilação , Ratos
11.
Sci Rep ; 5: 14096, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365165

RESUMO

The transition zone (TZ) of primary cilia serves as a diffusion barrier to regulate ciliogenesis and receptor localization for key signaling events such as sonic hedgehog signaling. Its gating mechanism is poorly understood due to the tiny volume accommodating a large number of ciliopathy-associated molecules. Here we performed stimulated emission depletion (STED) imaging of collective samples and recreated superresolved relative localizations of eight representative species of ciliary proteins using position averages and overlapped with representative electron microscopy (EM) images, defining an architectural foundation at the ciliary base. Upon this framework, transmembrane proteins TMEM67 and TCTN2 were accumulated at the same axial level as MKS1 and RPGRIP1L, suggesting that their regulation roles for tissue-specific ciliogenesis occur at a specific level of the TZ. CEP290 is surprisingly localized at a different axial level bridging the basal body (BB) and other TZ proteins. Upon this molecular architecture, two reservoirs of intraflagellar transport (IFT) particles, correlating with phases of ciliary growth, are present: one colocalized with the transition fibers (TFs) while the other situated beyond the distal edge of the TZ. Together, our results reveal an unprecedented structural framework of the TZ, facilitating our understanding in molecular screening and assembly at the ciliary base.


Assuntos
Cílios/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Cílios/química , Cílios/ultraestrutura , Proteínas do Citoesqueleto , Genes Reporter , Humanos , Proteínas de Membrana/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Proteínas de Neoplasias/metabolismo , Proteínas/metabolismo
12.
Biomed Res Int ; 2015: 575170, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950000

RESUMO

Tau tubulin kinase 2 (TTBK2) is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1) kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas tau/metabolismo , Sítios de Ligação , Humanos , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Tubulina (Proteína)/metabolismo
13.
Environ Toxicol ; 30(11): 1343-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24890016

RESUMO

Diallyl trisulfide (DATS), a chemopreventive dietary constituent and extracted from garlic, has been shown to against cultured many types of human cancer cell liens but the fate of apoptosis in murine leukemia cells in vitro and immune responses in leukemic mice remain elusive. Herein, we clarified the actions of DATS on growth inhibition of murine leukemia WEHI-3 cells in vitro and used WEHI-3 cells to generate leukemic mice in vivo, following to investigate the effects of DATS in animal model. In in vitro study, DATS induced apoptosis of WEHI-3 cells through the G0/G1 phase arrest and induction of caspase-3 activation. In in vivo study DATS decreased the weight of spleen of leukemia mice but did not affect the spleen weight of normal mice. DATS promoted the immune responses such as promotions of the macrophage phagocytosis and NK cell activities in WEHI-3 leukemic and normal mice. However, DATS only promotes NK cell activities in normal mice. DATS increases the surface markers of CD11b and Mac-3 in leukemia mice but only promoted CD3 in normal mice. In conclusion, the present study indicates that DATS induces cell death through induction of apoptosis in mice leukemia WHEI-3 cells. DATS also promotes immune responses in leukemia and normal mice in vivo.


Assuntos
Compostos Alílicos/farmacologia , Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Experimental/imunologia , Leucemia Experimental/prevenção & controle , Sulfetos/farmacologia , Compostos Alílicos/uso terapêutico , Animais , Anticarcinógenos/uso terapêutico , Antígenos de Diferenciação/imunologia , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Alho/química , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Sulfetos/uso terapêutico
14.
Dev Cell ; 30(2): 238-45, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25017693

RESUMO

Centrioles are 9-fold symmetric structures duplicating once per cell cycle. Duplication involves self-oligomerization of the centriolar protein SAS-6, but how the 9-fold symmetry is invariantly established remains unclear. Here, we found that SAS-6 assembly can be shaped by preexisting (or mother) centrioles. During S phase, SAS-6 molecules are first recruited to the proximal lumen of the mother centriole, adopting a cartwheel-like organization through interactions with the luminal wall, rather than via their self-oligomerization activity. The removal or release of luminal SAS-6 requires Plk4 and the cartwheel protein STIL. Abolishing either the recruitment or the removal of luminal SAS-6 hinders SAS-6 (or centriole) assembly at the outside wall of mother centrioles. After duplication, the lumen of engaged mother centrioles becomes inaccessible to SAS-6, correlating with a block for reduplication. These results lead to a proposed model that centrioles may duplicate via a template-based process to preserve their geometry and copy number.


Assuntos
Centríolos/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
15.
Stem Cells Dev ; 23(2): 115-23, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24007236

RESUMO

Human induced pluripotent stem cell (hiPSC) reprogramming possesses enormous potential in stem cell research and disease modeling. Chemical and mechanical signaling has been implicated in the maintenance of pluripotency of hiPSCs, as well as their differentiation pathways toward various lineages. Primary cilia have been shown to play a critical role in mechanochemical signaling across a wide spectrum of cell types. The functions of primary cilia in hiPSCs and their characteristic changes during the reprogramming process remain largely vague. This work focused on understanding how reprogramming affects the mechanical characteristics of primary cilia. Using immunofluorescence imaging assays, we validated the presence of primary cilia on reprogrammed cells. These reprogrammed cells had high expression levels of pluripotency markers, Nanog and Cripto, shown by quantitative polymerase chain reaction assays. We also found high expression of hedgehog signaling proteins Patched1 (Ptch1), Smoothened (Smo), Gli1, and Gli2 in reprogrammed cells. Stimulation of the hedgehog pathway resulted in the concerted movement of Ptch1 out of the cilia and Smo into the cilia, implying that the cilia on iPSCs contain functioning hedgehog machinery. The mean length of primary cilia in reprogrammed cells was shorter than those of parental human fibroblasts. Morphometric analyses revealed that reprogramming resulted in an increase in the curvature of primary cilia from ∼0.015 to 0.064 µm(-1), indicating an underlying approximately fourfold decrease in their rigidity, and a decrease in length of primary cilia from ∼2.38 to ∼1.45 µm. Furthermore, reprogramming resulted in fewer primary cilia displaying kinked geometries.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Cílios/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células Cultivadas , Proteínas Ligadas por GPI/biossíntese , Proteínas de Homeodomínio/biossíntese , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Fatores de Transcrição Kruppel-Like/biossíntese , Proteína Homeobox Nanog , Proteínas de Neoplasias/biossíntese , Proteínas Nucleares/biossíntese , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Transdução de Sinais/genética , Receptor Smoothened , Fatores de Transcrição/biossíntese , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco
16.
J Biomol Struct Dyn ; 31(2): 129-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22870946

RESUMO

Hepatitis C virus (HCV) NS3 helicase couples adenosine triphosphate (ATP) binding and hydrolysis to polynucleotide unwinding. Understanding the regulation mechanism of ATP binding will facilitate targeting of the ATP-binding site for potential therapeutic development for hepatitis C. T324, an amino acid residue connecting domains 1 and 2 of NS3 helicase, has been suggested as part of a flexible hinge for opening of the ATP-binding cleft, although the detailed mechanism remains largely unclear. We used computational simulation to examine the mutational effect of T324 on the dynamics of the ATP-binding site. A mutant model, T324A, of the NS3 helicase apo structure was created and energy was minimized. Molecular dynamics simulation was conducted for both wild type and the T324A mutant apo structures to compare their differences. For the mutant structure, histogram analysis of pairwise distances between residues in domains 1 and 2 (E291-Q460, K210-R464 and R467-T212) showed that separation between the two domains was reduced by ~10% and the standard deviation by ~33%. Root mean square fluctuation (RMSF) analysis demonstrated that residues in close proximity to residue 324 have at least 30% RMSF value reductions in the mutant structure. Solvent RMSF analysis showed that more water molecules were trapped near D290 and H293 in domain 1 to form an extensive interaction network constraining cleft opening. We also demonstrated that the T324A mutation established a new atomic interaction with V331, revealing that an atomic interaction cascade from T324 to residues in domains 1 and 2 controls the flexibility of the ATP-binding cleft.


Assuntos
Trifosfato de Adenosina/química , Hepacivirus/enzimologia , Simulação de Dinâmica Molecular , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Ligação de Hidrogênio , Ligação Proteica , Estrutura Secundária de Proteína , Solventes/química , Proteínas não Estruturais Virais/genética , Água/química
17.
J Biomol Struct Dyn ; 29(3): 497-507, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22066536

RESUMO

A majority of ATP-dependent molecular motors are RecA-like proteins, performing diverse functions in biology. These RecA-like molecular motors consist of a highly conserved core containing the ATP-binding site. Here I examined how ATP binding within this core is coupled to the conformational changes of different RecA-like molecular motors. Conserved hydrogen bond networks and conformational changes revealed two major mechanical transduction mechanisms: (1) intra-domain conformational changes and (2) inter-domain conformational changes. The intra-domain mechanism has a significant hydrogen bond rearrangement within the domain containing the P-loop, causing relative motion between two parts of the protein. The inter-domain mechanism exhibits little conformational change in the P-loop domain. Instead, the major conformational change is observed between the P-loop domain and an adjacent domain or subunit containing the arginine finger. These differences in the mechanical transduction mechanisms may link to the underlying energy surface governing a Brownian ratchet or a power stroke.


Assuntos
Proteínas Motores Moleculares/química , Recombinases Rec A/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Metabolismo Energético , Ligação de Hidrogênio , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Movimento , Conformação Proteica , Estrutura Terciária de Proteína , Recombinases Rec A/metabolismo
18.
Biophys J ; 100(2): 430-9, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21244839

RESUMO

Dimeric myosin VI moves processively hand-over-hand along actin filaments. We have characterized the mechanism of this processive motion by measuring the impact of structural and chemical perturbations on single-molecule processivity. Processivity is maintained despite major alterations in lever arm structure, including replacement of light chain binding regions and elimination of the medial tail. We present kinetic models that can explain the ATP concentration-dependent processivities of myosin VI constructs containing either native or artificial lever arms. We conclude that detailed tuning of structure and intramolecular communication are dispensable for processive motion, and further show theoretically that one proposed type of nucleotide gating can be detrimental rather than beneficial for myosin processivity.


Assuntos
Actinas/química , Adenosina Trifosfatases/química , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Cinética , Cadeias Pesadas de Miosina/isolamento & purificação , Miosinas/química , Miosinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Spodoptera/citologia
19.
J Mol Biol ; 373(5): 1361-73, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17900617

RESUMO

We present a computational method that predicts a pathway of residues that mediate protein allosteric communication. The pathway is predicted using only a combination of distance constraints between contiguous residues and evolutionary data. We applied this analysis to find pathways of conserved residues connecting the myosin ATP binding site to the lever arm. These pathway residues may mediate the allosteric communication that couples ATP hydrolysis to the lever arm recovery stroke. Having examined pre-stroke conformations of Dictyostelium, scallop, and chicken myosin II as well as Dictyostelium myosin I, we observed a conserved pathway traversing switch II and the relay helix, which is consistent with the understood need for allosteric communication in this conformation. We also examined post-rigor and rigor conformations across several myosin species. Although initial residues of these paths are more heterogeneous, all but one of these paths traverse a consistent set of relay helix residues to reach the beginning of the lever arm. We discuss our results in the context of structural elements and reported mutational experiments, which substantiate the significance of the pre-stroke pathways. Our method provides a simple, computationally efficient means of predicting a set of residues that mediate allosteric communication. We provide a refined, downloadable application and source code (on https://simtk.org) to share this tool with the wider community (https://simtk.org/home/allopathfinder).


Assuntos
Regulação Alostérica , Sequência Conservada , Modelos Químicos , Miosinas/química , Animais , Galinhas , Computadores , Dictyostelium , Proteínas Motores Moleculares/química , Miosina Tipo I/química , Miosina Tipo II/química , Pectinidae
20.
Proteins ; 67(4): 886-96, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17373706

RESUMO

Hepatitis C virus NS3 helicase is an enzyme that unwinds double-stranded polynucleotides in an ATP-dependent reaction. It provides a promising target for small molecule therapeutic agents against hepatitis C. Design of such drugs requires a thorough understanding of the dynamical nature of the mechanochemical functioning of the helicase. Despite recent progress, the detailed mechanism of the coupling between ATPase activity and helicase activity remains unclear. Based on an elastic network model (ENM), we apply two computational analysis tools to probe the dynamical mechanism underlying the allosteric coupling between ATP binding and polynucleotide binding in this enzyme. The correlation analysis identifies a network of hot-spot residues that dynamically couple the ATP-binding site and the polynucleotide-binding site. Several of these key residues have been found by mutational experiments as functionally important, while our analysis also reveals previously unexplored hot-spot residues that are potential targets for future mutational studies. The conformational changes between different crystal structures of NS3 helicase are found to be dominated by the lowest frequency mode solved from the ENM. This mode corresponds to a hinge motion of the highly flexible domain 2. This motion simultaneously modulates the opening/closing of the domains 1-2 cleft where ATP binds, and the domains 2-3 cleft where the polynucleotide binds. Additionally, a small twisting motion of domain 1, observed in both mode 1 and the computed ATP binding induced conformational change, fine-tunes the binding affinity of the domains 1-3 interface for the polynucleotide. The combination of these motions facilitates the translocation of a single-stranded polynucleotide in an inchworm-like manner.


Assuntos
Hepacivirus/enzimologia , Modelos Biológicos , RNA Helicases/química , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Biologia Computacional , Cristalografia por Raios X , Elasticidade , Modelos Moleculares , Estrutura Terciária de Proteína , RNA Helicases/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA