Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
ACS Omega ; 9(3): 4085-4095, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284087

RESUMO

The water-oil-rock system's surfactant and electrostatic interactions are essential for removing oil droplets from rock substrates. Our work illustrates the impact of surface charge on the oil contact angle in an ideal system comprising silica, water, and dodecane; smaller contact angles are observed for more polar substrates. Modifying the polarity of the model silica surface allows for the observation of the creation of heteromolecule channels and the process of stripping crude oil while accounting for the impacts of water flow and different types of surfactant molecules. In solutions containing ionic surfactants, the injection and diffusion of water molecules between the oil layer and the silica substrate are facilitated by the disturbance of the oil molecules by the surfactant molecules. By comparing different surfactants in water flow, the characterization of water molecular channels and the stripping process of crude oil can be observed. The disruption of oil molecules by the surfactant molecules has been found to enhance the injection and diffusion of water molecules between the oil layer and the silica substrate in solutions containing ionic surfactants. The size of the contact angle and the extension of the water channel are simultaneously greatly influenced by the surfactant's molecular characteristics and the substrate's polarity. These simulation results show that several factors influence the process of water molecule channel creation that water molecules diffuse, and the detachment of oil from the silica substrate is facilitated by the migration of surfactants to the bottom of the oil molecule and the electrostatic interactions between the water molecules and the silica substrate.

3.
Clin Immunol ; 257: 109811, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858752

RESUMO

BACKGROUND: To explore the specific marker of CD8+ T cell subsets which are closely related to the prognosis and immunotherapy of patients with colon cancer. METHODS: 18 kinds of immune cell expression profile data sets were obtained from GEO database. Compared with other immune cell types, the specific markers of CD8 (+) T cells (TI-CD8) in colorectal cancer were screened. Regression analyses were used to further screen prognostic related genes and construct a prognostic evaluation model. The patients were stratified and analyzed according to the risk scores, KRAS mutation status, stage, lymphatic infiltration and other indicators. The landscape of infiltration level, mutation and copy number variation of immune subsets in high and low TI-CD8Sig score groups were compared and analyzed. The difference of drug response between high and low TI-CD8Sig score groups was analyzed. Differential expression of the model genes was verified by the HPA database. RESULTS: Six prognostic-related CD8T cell-specific gene targets were further screened, and the prognostic evaluation model was constructed. The AUC value of the model is >0.75. FAT3 and UNC13C showed a high mutation state in the low-risk group, while USH2A, MUC5B et al. specifically showed a high mutation state in the high-risk group. Compared with the low-risk group, the high-risk group had lower effective rate of drug response. The expression of PD-1 gene was positively correlated with the level of TI-CD8Sig score. CONCLUSION: The risk assessment model based on CD8T cell-specific marker genes can effectively predict the prognosis and the drug response of patients with CRC.


Assuntos
Neoplasias do Colo , Variações do Número de Cópias de DNA , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Linfócitos T CD8-Positivos , Prognóstico , Imunoterapia , Aprendizado de Máquina , Microambiente Tumoral
4.
MedComm (2020) ; 4(5): e350, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37719444

RESUMO

Platelets are a class of pluripotent cells that, in addition to hemostasis and maintaining vascular endothelial integrity, are also involved in tumor growth and distant metastasis. The tumor microenvironment is a complex and comprehensive system composed of tumor cells and their surrounding immune and inflammatory cells, tumor-related fibroblasts, nearby interstitial tissues, microvessels, and various cytokines and chemokines. As an important member of the tumor microenvironment, platelets can promote tumor invasion and metastasis through various mechanisms. Understanding the role of platelets in tumor metastasis is important for diagnosing the risk of metastasis and prolonging survival. In this study, we more fully elucidate the underlying mechanisms by which platelets promote tumor growth and metastasis by modulating processes, such as immune escape, angiogenesis, tumor cell homing, and tumor cell exudation, and further summarize the effects of platelet-tumor cell interactions in the tumor microenvironment and possible tumor treatment strategies based on platelet studies. Our summary will more comprehensively and clearly demonstrate the role of platelets in tumor metastasis, so as to help clinical judgment of the potential risk of metastasis in cancer patients, with a view to improving the prognosis of patients.

5.
RSC Adv ; 13(36): 25518-25528, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37636500

RESUMO

The emulsions formed by conventional surfactants have poor stability in high temperature and high salinity reservoirs, which limits the fluidity control ability of emulsion flooding systems. Hydroxyl sulfobetaine surfactants have excellent emulsifying properties and can maintain good activity under high temperature and high salinity conditions. In this study, an emulsion synergistic-stabilized by hydroxyl sulfobetaine surfactant LHSB and SiO2 nanoparticles was reported for the first time, and the feasibility of its enhanced oil recovery was investigated. The results show that the stability, temperature and salt resistance of the emulsion were significantly improved after adding nanoparticles, which positively affected the exploitation of harsh reservoirs. The synergistic-stabilized mechanism between LHSB and SiO2 nanoparticles was revealed by the measurements of zeta potential, surface tension and contact angle. Moreover, core flooding experiments reflect the emulsion synergistic-stabilized by LHSB and SiO2 nanoparticles can effectively enhance oil recovery by 11.41%. This study provides an emulsion flooding system with excellent performance for enhanced oil recovery in harsh reservoirs.

6.
Genes Dis ; 10(5): 2109-2124, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37492736

RESUMO

This study aims to identify the inflammatory factor-related genes which help to predict the prognosis of patients with colorectal cancer. GSEA (Gene Set Enrichment Analysis) was used to acquire inflammation-related genes and the corresponding expression information was collected from TCGA database to determine the DEGs (differentially-expressed genes) in CRC patients. We conducted enrichment analysis and PPI (protein-protein interaction) of these DEGs. Besides, key genes that are both differentially-expressed and prognosis-related were screened out, which were used to establish the prognostic model. We obtained 79 DEGs and 19 prognostic genes, 10 prognostic-related differential genes were eventually screened. These genes were used to construct the prognostic model. We also identified that the immune infiltration score of macrophages between different risk groups was significantly different and similar distinction was witnessed in immune function score of APC (antigen-presenting cell) co-stimulation and type I IFN (interferon) response.

8.
J Mater Chem B ; 11(23): 5043-5050, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37211877

RESUMO

The diseases caused by two pathological processes, thrombosis, and thromboembolism, are clinically known as thrombotic diseases, which seriously threaten human life and health, and their incidence rate is the highest among various diseases. Research on thrombotic diseases is one of the focuses and hotspots of contemporary medical research. Nanomedicine is a new branch of nanotechnology used in the medical field, and nanomaterials are widely used in medical imaging and drug delivery to help diagnose and treat major diseases such as cancer. With the gradual maturity of nanotechnology, new nanomaterials have recently been used in antithrombotic drugs and released accurately at lesions, which has improved antithrombotic therapy safety. Nanosystems can be employed for cardiovascular diagnosis in future as they can aid in diagnosing pathological diseases and treat them with targeted delivery systems. Unlike other reviews, we herein aim to illustrate the progress of nanosystems in thrombosis therapy. This paper mainly describes how a drug-loaded nanosystem can control drug release under various conditions and accurately treat thrombus, summarizing the research progress of nanotechnology in antithrombotic therapy so that clinicians can better understand nanotechnology and its applications and provide new ideas for treating thrombosis.


Assuntos
Fibrinolíticos , Trombose , Humanos , Fibrinolíticos/uso terapêutico , Nanotecnologia/métodos , Nanomedicina/métodos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Trombose/diagnóstico por imagem , Trombose/tratamento farmacológico
9.
ACS Omega ; 8(2): 2057-2064, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687061

RESUMO

Surfactants play an important role in enhancing oil recovery (EOR). With the development of tertiary oil recovery technology and the continuous improvement of environmental protection requirements, green environmentally friendly surfactants play an important role in replacing conventional surfactants. In this paper, cardanol polyoxyethylene ether (CPE) was synthesized from natural biomass cardanol. Its structure was characterized, and its surface/interface properties, salt and temperature resistance, wettability, emulsification, and oil displacement effect were studied experimentally. The results showed that CPE had good interfacial activity and temperature and salt tolerance, which can reduce the oil-water interfacial tension to 10-1 mN/m. The emulsion formed by CPE had good stability. With the increase in CPE dosage, the droplet size of the emulsion decreases. The emulsion stabilized by CPE can effectively enhance oil recovery by 11.8%. Therefore, CPE not only is environmentally friendly but also has great application potential in the field of EOR.

10.
Front Oncol ; 12: 879405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875124

RESUMO

Background: Previous studies reported the related role of RNA n6-methyladenosine (m6A) modification in tumorigenesis and development. However, it is not clear whether m6A modification also plays a potential role in the immune regulation of rectal cancer (RC) and the formation of tumor microenvironment. Methods: In this study, we screened 23 m6A regulatory factors from 369 rectal cancer specimens, further determined the modification patterns of m6A in RC, and systematically linked these modification patterns with the characteristics of TME cell infiltration. The principal component analysis (PCA) algorithm was used to evaluate the m6A modification pattern of a single tumor related to immune response. Results: Three different m6A modification patterns were found in the measurement results, which are related to different clinical results and biological pathways. TME identification results show that the identified m6A pattern is closely related to immune characteristics. According to the m6Ascore extracted from m6A-related signature genes, RC patients were divided into high and low score subgroups combined with tumor mutation burden. Patients with high tumor mutation burden and higher m6Ascore have a significant survival advantage and enhanced immune infiltration. Further analysis showed that patients with higher m6Ascore had higher PD-L1 expression levels and showed better immune response and lasting clinical benefits. Conclusions: M6A modification plays a crucial role in the formation of TME diversity and complexity. The evaluation of the m6A modification mode will help us to enhance our understanding of the characteristics of TME infiltration and provide new insights for more effective immunotherapy strategies.

12.
BMC Infect Dis ; 22(1): 353, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397512

RESUMO

BACKGROUND: The incidence of sparganosis, especially intracranial live sparganosis is very low in China. Due to the lack of typical clinical manifestations, it is difficult to make a clear preoperative diagnosis of the disease, which often leads to delays the disease and serious consequences. CASE PRESENTATION: A 23-year-old man presented with a 17-year history of intermittent seizures and right extremity numbness and weakness. Magnetic resonance imaging (MRI) showed patchy, nodular and line-like enhancement. Enzyme-linked immunosorbent assay (ELISA) detected positive antibodies to Spirometra mansoni in peripheral blood and cerebrospinal fluid (CSF). In addition, during the operation, an ivory-colored live sparganosis was removed under the precise positioning of neuronavigation, and the patient was diagnosed with cerebral sparganosis. The patient began praziquantel and sodium valproate treatment after the operation, and was followed up for 3 months. There was no recurrence of epilepsy, and the weakness and numbness of the right limb improved. CONCLUSION: Nonspecific clinical manifestations often make the diagnosis of cerebral sparganosis difficult, and a comprehensive diagnosis should be made based on epidemiological history, clinical manifestations, ELISA results and imaging findings. Surgery is the preferred method for the treatment of cerebral sparganosis, and more satisfactory results can be achieved under the precise positioning of neuronavigation.


Assuntos
Esparganose , Spirometra , Adulto , Animais , Humanos , Hipestesia/tratamento farmacológico , Imageamento por Ressonância Magnética , Masculino , Praziquantel/uso terapêutico , Esparganose/diagnóstico , Esparganose/tratamento farmacológico , Esparganose/cirurgia , Adulto Jovem
13.
Mol Cancer ; 20(1): 104, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412644

RESUMO

Circulating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for high-throughput sequencing analysis of tumor tissues to find the genomic characteristics of low-abundance tumor stem cells. Single-cell sequencing of circulating tumor cells avoids interference from tumor heterogeneity by comparing the differences between single-cell genomes, transcriptomes, and epigenetic groups among circulating tumor cells, primary and metastatic tumors, and metastatic lymph nodes in patients' peripheral blood, providing a new perspective for understanding the biological process of tumors. This article describes the identification, biological characteristics, and single-cell genome-wide variation in circulating tumor cells and summarizes the application of single-cell sequencing technology to tumor typing, metastasis analysis, progression detection, and adjuvant therapy.


Assuntos
Biomarcadores Tumorais , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/diagnóstico , Neoplasias/genética , Células Neoplásicas Circulantes/metabolismo , Análise de Célula Única , Citometria de Fluxo , Perfilação da Expressão Gênica , Heterogeneidade Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/terapia , Células-Tronco Neoplásicas/metabolismo , Análise de Célula Única/métodos , Transcriptoma
14.
Front Cell Dev Biol ; 9: 695280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262906

RESUMO

[This corrects the article DOI: 10.3389/fcell.2021.647106.].

15.
Am J Transl Res ; 13(6): 6142-6155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306353

RESUMO

OBJECTIVE: To detect the expression of PD-L1 and K-ras gene status in colorectal cancer tissues and analyze the relationship between PD-L1 expression and the clinicopathological features and K-ras gene status in colorectal cancer. METHODS: Two hundred fifty colorectal cancer tissues were collected from the First Affiliated Hospital of Nanchang University. The normal intestinal mucosal tissues of 20 patients were randomly selected for inclusion in the control group. PD-L1 expression was detected by immunohistochemistry. K-ras gene mutation in colorectal cancer tissues was detected by sequencing. The clinical significance of PD-L1 expression and relationship between PD-L1 expression and K-ras gene mutation were analyzed. RESULTS: The immunohistochemistry assay showed that PD-L1 was highly expressed in colorectal cancer. The positive expression of PD-L1 was increased with lymph node metastasis and high TNM stage. The 5-year survival rate of PD-L1-positive patients was significantly lower than that of PD-L1-negative patients. The K-ras gene mutation rate was 35.6%, and the main mutation site was in codon 12. The positive PD-L1 expression rate in patients with K-ras gene mutations was significantly higher than that in patients with wild-type K-ras gene mutations. CONCLUSION: PD-L1 is highly expressed in colorectal cancer, and its expression is related to metastasis and tumor stage. PD-L1 expression is closely related to K-ras gene mutation, and the K-ras gene status may affect PD-L1 expression. TRIAL REGISTRATION: retrospectively registered.

16.
Sci Rep ; 11(1): 15412, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326374

RESUMO

To screen the key genes in the development of gastric cancer and their influence on prognosis. The GEO database was used to screen gastric cancer-related gene chips as a training set, and the R packages limma tool was used to analyze the differential genes expressed in gastric cancer tissues compared to normal tissues, and then the selected genes were verified in the validation set. The String database was used to calculate their Protein-protein interaction (PPI) network, using Cytoscape software's Centiscape and other plug-ins to analyze key genes in the PPI network. The DAVID database was used to enrich and annotate gene functions of differential genes and PPI key module genes, and further explore correlation between expression level and clinical stage and prognosis. Based on clinical data and patient samples, differential expression of key node genes was verified by immunohistochemistry. The 63 characteristic differential genes screened had good discrimination between gastric cancer and normal tissues, and are mainly involved in regulating extracellular matrix receptor interactions and the PI3k-AKT signaling pathway. Key nodes in the PPI network regulate tumor proliferation and metastasis. Analysis of the expression levels of key node genes found that relative to normal tissues, the expression of ITGB1 and COL1A2 was significantly increased in gastric cancer tissues, and patients with late clinical stages of tumors had higher expression of ITGB1 and COL1A2 in tumor tissues, and their survival time was longer (P < 0.05). This study found that ITGB1 and COL1A2 are key genes in the development of gastric cancer and can be used as prognostic markers and potential new targets for gastric cancer.


Assuntos
Adenocarcinoma/genética , Carcinogênese/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Transcriptoma , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Biomarcadores Tumorais/genética , Carcinogênese/patologia , Colágeno Tipo I/genética , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Integrina beta1/genética , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Prognóstico , Mapas de Interação de Proteínas/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida
17.
ACS Omega ; 6(16): 11068-11076, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056260

RESUMO

The composite flooding system composed of a surfactant and nanoparticles has shown great application potential in enhancing oil recovery. However, at present, these research studies are mainly focused on anionic surfactants. Relatively speaking, alkanolamide (CDEA), a nonionic surfactant, has the characteristics of a small adsorption amount on the rock surface, no cloud point, good temperature resistance, and good salt resistance. However, to the best of our best knowledge, there is no research report on the composite flooding system composed of CDEA and nanoparticles. Therefore, the surfactant/nanoparticle (S/NP) flooding system based on CDEA and nano-SiO2 was studied in this paper. The S/NP flooding system (0.1% CDEA + 0.05% SiO2) was constructed based on the performance in reducing the oil-water interfacial tension (IFT) and the stability of the composite system. The IFT between the S/NP flooding system and the crude oil can reach ultra-low values (3 × 10-3 mN/m), and there is no obvious sedimentation within 72 h. The sandpack flood tests show that the oil recovery rate is increased by 16.8% compared with water flooding and finally reaches 58.2%. Based on micromodel flooding tests, the mechanisms of the S/NP flooding system are studied as follows: the synergistic effect of nanoparticles and surfactants can re-enforce its oil-water interface performance and improve the oil displacement efficiency and the Jamin effect of emulsified oil droplets, combined with the thickening property and retention plugging of nanoparticles, improves the sweep efficiency. As the surfactant and nanoparticle used in this study are commercially available industrial products, the research results have important guiding significance for promoting the industrial application of surfactant/nanoparticle composite flooding technology.

18.
Front Cell Dev Biol ; 9: 647106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912561

RESUMO

Objectives: To identify the key glycolysis-related genes (GRGs) in the occurrence and development of pancreatic ductal carcinoma (PDAC), and to construct a glycolysis-related gene model for predicting the prognosis of PDAC patients. Methodology: Pancreatic ductal carcinoma (PDAC) data and that of normal individuals were downloaded from the TCGA database and Genotype-Tissue Expression database, respectively. GSEA analysis of glycolysis-related pathways was then performed on PDAC data to identify significantly enriched GRGs. The genes were combined with other patient's clinical information and used to construct a glycolysis-related gene model using cox regression analysis. The model was further evaluated using data from the validation group. Mutations in the model genes were subsequently identified using the cBioPortal. In the same line, the expression levels of glycolysis related model genes in PDAC were analyzed and verified using immunohistochemical images. Model prediction for PDAC patients with different clinical characteristics was then done and the relationship between gene expression level, clinical stage and prognosis further discussed. Finally, a nomogram map of the predictive model was constructed to evaluate the prognosis of patients with PDAC. Results: GSEA results of the training set revealed that genes in the training set were significantly related to glycolysis pathway and iconic glycolysis pathway. There were 108 differentially expressed GRGs. Among them, 29 GRGs were closely related to prognosis based on clinical survival time. Risk regression analysis further revealed that there were seven significantly expressed glycolysis related genes. The genes were subsequently used to construct a predictive model. The model had an AUC value of more than 0.85. It was also significantly correlated with survival time. Further expression analysis revealed that CDK1, DSC2, ERO1A, MET, PYGL, and SLC35A3 were highly expressed in PDAC and CHST12 was highly expressed in normal pancreatic tissues. These results were confirmed using immunohistochemistry images of normal and diseases cells. The model could effectively evaluate the prognosis of PDAC patients with different clinical characteristics. Conclusion: The constructed glycolysis-related gene model effectively predicts the occurrence and development of PDAC. As such, it can be used as a prognostic marker to diagnose patients with PDAC.

19.
Front Oncol ; 10: 550002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33215029

RESUMO

OBJECTIVE: To find new immune-related prognostic markers for non-small cell lung cancer (NSCLC). METHODS: We found GSE14814 is related to NSCLC in GEO database. The non-small cell lung cancer observation (NSCLC-OBS) group was evaluated for immunity and divided into high and low groups for differential gene screening according to the score of immune evaluation. A single factor COX regression analysis was performed to select the genes related to prognosis. A prognostic model was constructed by machine learning, and test whether the model has a test efficacy for prognosis. A chip-in-chip non-small cell lung cancer chemotherapy (NSCLC-ACT) sample was used as a validation dataset for the same validation and prognostic analysis of the model. The coexpression genes of hub genes were obtained by pearson analysis and gene enrichment, function enrichment and protein interaction analysis. The tumor samples of patients with different clinical stages were detected by immunohistochemistry and the expression difference of prognostic genes in tumor tissues of patients with different stages was compared. RESULTS: By screening, we found that LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 is closely related to prognosis. After machine learning, we constructed the immune prognosis model from these 5 genes, and the model AUC values were greater than 0.9 at three time periods of 1, 3, and 5 years; the total survival period of the low-risk group was significantly better than that of the high-risk group. The results of prognosis analysis in ACT samples were consistent with OBS groups. The coexpression genes are mainly involved B cell receptor signaling pathway and are mainly enriched in apoptotic cell clearance. Prognostic key genes are highly correlated with PDCD1, PDCD1LG2, LAG3, and CTLA4 immune checkpoints. The immunohistochemical results showed that the expression of COPG2IT1 and HLA.DQA1 in stage III increased significantly and the expression of LYN, C3, and TNFRSF17 in stage III decreased significantly compared with that of stage I. The experimental results are consistent with the previous analysis. CONCLUSION: LYN, C3, COPG2IT1, LA.DQA1, and NFRSF17 may be new immune markers to judge the prognosis of patients with non-small cell lung cancer.

20.
J Cell Mol Med ; 24(24): 14128-14138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164330

RESUMO

This article aims to explore the underlying molecular mechanisms and prognosis-related genes in pancreatic cancer metastasis. Pancreatic cancer metastasis-related gene chip data were downloaded from GENE EXPRESSION OMNIBUS(GEO)database. Differentially expressed genes were screened after R-package pre-treatment. Functional annotations and related signalling pathways were analysed using DAVID software. GEPIA (Gene Expression Profiling Interactive Analysis) was used to perform prognostic analysis, and differential genes associated with prognosis were screened and validated using data from GEO. We screened 40 healthy patients, 40 primary pancreatic cancer and 40 metastatic pancreatic cancer patients, collected serum, designed primers and used qPCR to test the expression of prognosis-related genes in each group. 109 differentially expressed genes related with pancreatic cancer metastasis were screened, of which 49 were up-regulated and 60 were down-regulated. Functional annotation and pathway analysis revealed differentially expressed genes were mainly concentrated in protein activation cascade, extracellular matrix construction, decomposition, etc In the biological process, it is mainly involved in signalling pathways such as PPAR, PI3K-Akt and ECM receptor interaction. Prognostic analysis showed the expression levels of four genes were significantly correlated with the overall survival time of patients with pancreatic cancer, namely SCG5, CRYBA2, CPE and CHGB. qPCR experiments showed the expression of these four genes was decreased in both the primary pancreatic cancer group and the metastatic pancreatic cancer group, and the latter was more significantly reduced. Pancreatic cancer metastasis is closely related to the activation of PPAR pathway, PI3K-Akt pathway and ECM receptor interaction. SCG5, CRYBA2, CPE and CHGB genes are associated with the prognosis of pancreatic cancer, and their low expression suggests a poor prognosis.


Assuntos
Biomarcadores Tumorais , Biologia Computacional/métodos , Suscetibilidade a Doenças , Metástase Neoplásica , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Metástase Neoplásica/genética , Prognóstico , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA