Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817142

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Macrófagos , Tuberculose/tratamento farmacológico , Rifampina/farmacologia , Ferro
2.
Front Immunol ; 14: 1156239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153576

RESUMO

As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Manganês , Compostos de Manganês/farmacologia , Óxidos/uso terapêutico , Nucleotidiltransferases/metabolismo , Neoplasias/tratamento farmacológico
3.
Front Immunol ; 13: 956181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958612

RESUMO

Current chemotherapy strategies used in clinic appear with lots of disadvantages due to the low targeting effects of drugs and strong side effects, which significantly restricts the drug potency, causes multiple dysfunctions in the body, and even drives the emergence of diseases. Immunotherapy has been proved to boost the body's innate and adaptive defenses for more effective disease control and treatment. As a trace element, selenium plays vital roles in human health by regulating the antioxidant defense, enzyme activity, and immune response through various specific pathways. Profiting from novel nanotechnology, selenium nanoparticles have been widely developed to reveal great potential in anticancer, antibacterial, and anti-inflammation treatments. More interestingly, increasing evidence has also shown that functional selenium nanoparticles can be applied for potential immunotherapy, which would achieve more effective treatment efficiency as adjunctive therapy strategies for the current chemotherapy. By directly interacting with innate immune cells, such as macrophages, dendritic cells, and natural killer cells, selenium nanoparticles can regulate innate immunity to intervene disease developments, which were reported to boost the anticancer, anti-infection, and anti-inflammation treatments. Moreover, selenium nanoparticles can also activate and recover different T cells for adaptive immunity regulations to enhance their cytotoxic to combat cancer cells, indicating the potential of selenium nanoparticles for potential immunotherapy strategy development. Here, aiming to enhance our understanding of the potential immunotherapy strategy development based on Se NPs, this review will summarize the immunological regulation effects of selenium nanoparticles and the application of selenium nanoparticle-based immunotherapy strategies. Furthermore, we will discuss the advancing perspective of selenium nanoparticle-based potential immunotherapy as a kind of novel adjunctive therapy to enhance the efficiency of current chemotherapies and also introduce the current obstacles for the development of selenium nanoparticles for potential immunotherapy strategy development. This work is expected to promote the future research on selenium nanoparticle-assisted immunotherapy and finally benefit the more effective disease treatments against the threatening cancer and infectious and chronic diseases.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Imunidade , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias/terapia
4.
Front Cell Infect Microbiol ; 12: 1074533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776549

RESUMO

Introduction: As a deadly disease induced by Mycobacterium tuberculosis (Mtb), tuberculosis remains one of the top killers among infectious diseases. The low intracellular Mtb killing efficiency of current antibiotics introduced the long duration anti-TB therapy in clinic with strong side effects and increased drug-resistant mutants. Therefore, the exploration of novel anti-TB agents with potent anti-TB efficiency becomes one of the most urgent issues for TB therapies. Methods: Here, we firstly introduced a novel method for the preparation of zinc oxide-selenium nanoparticles (ZnO-Se NPs) by the hybridization of zinc oxide and selenium to combine the anti-TB activities of zinc oxide nanoparticles and selenium nanoparticles. We characterized the ZnO-Se NPs by dynamic laser light scattering and transmission electron microscopy, and then tested the inhibition effects of ZnO-Se NPs on extracellular Mtb by colony-forming units (CFU) counting, bacterial ATP analysis, bacterial membrane potential analysis and scanning electron microscopy imaging. We also analyzed the effects of ZnO-Se NPs on the ROS production, mitochondrial membrane potential, apoptosis, autophagy, polarization and PI3K/Akt/mTOR signaling pathway of Mtb infected THP-1 macrophages. At last, we also tested the effects of ZnO-Se NPs on intracellular Mtb in THP-1 cells by colony-forming units (CFU) counting. Results: The obtained spherical core-shell ZnO-Se NPs with average diameters of 90 nm showed strong killing effects against extracellular Mtb, including BCG and the virulent H37Rv, by disrupting the ATP production, increasing the intracellular ROS level and destroying the membrane structures. More importantly, ZnO-Se NPs could also inhibit intracellular Mtb growth by promoting M1 polarization to increase the production of antiseptic nitric oxide and also promote apoptosis and autophagy of Mtb infected macrophages by increasing the intracellular ROS, disrupting mitochondria membrane potential and inhibiting PI3K/Akt/mTOR signaling pathway. Discussion: These ZnO-Se NPs with synergetic anti-TB efficiency by combining the Mtb killing effects and host cell immunological inhibition effects were expected to serve as novel anti-TB agents for the development of more effective anti-TB strategy.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Nanopartículas , Selênio , Óxido de Zinco , Trifosfato de Adenosina , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Selênio/farmacologia , Serina-Treonina Quinases TOR , Óxido de Zinco/farmacologia , Óxido de Zinco/química
5.
Biochem Pharmacol ; 172: 113762, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843541

RESUMO

IKK-ß is indispensable for inflammatory osteolysis, the functional residues of IKK-ß are therapeutic drug targets for developing inhibitors to treat multiple diseases now. Thus it remains appealing to find the new residues of IKK-ß to influence osteoclasts for alleviating bone loss diseases such as rheumatoid arthritis (RA). By employing IKK-ß cysteine 46-A transgenic (IKK-ßC46A) mice, we found that mutation of cysteine 46 to alanine in IKK-ß exacerbated inflammatory bone destruction in vivo, and increased osteoclast differentiation and bone resorption ex vivo and in vitro. Consistent with these, IKK-ß kinase activity as well as c-Fos, NFATc1 were up-regulated in bone marrow macrophages (BMMs) from IKK-ßC46A mice during RANKL-induced osteoclastogenesis. Of interesting, we further identified and demonstrated that the expressions of mPGES-1 and caveolin-1 were heightened in BMMs of IKK-ßC46A mice compared to those in WT mice in RANKL-induced osteoclastogenesis. Together, it revealed that mutating cysteine 46 in IKK-ß could increase caveolin-1 and mPGES-1 expression to facilitate osteoclast differentiation and osteolysis. Cysteine 46 can serve as a novel target in IKK-ß for designing inhibitors to treat osteolysis.


Assuntos
Caveolina 1/metabolismo , Diferenciação Celular/fisiologia , Quinase I-kappa B/genética , Osteoclastos/fisiologia , Osteólise/metabolismo , Prostaglandina-E Sintases/metabolismo , Animais , Células da Medula Óssea , Caveolina 1/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Quinase I-kappa B/metabolismo , Macrófagos , Camundongos , Camundongos Transgênicos , Monócitos , Mutação , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteólise/genética , Prostaglandina-E Sintases/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/administração & dosagem , Ligante RANK/farmacologia , Regulação para Cima
6.
Pharmacol Res ; 149: 104440, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31479750

RESUMO

Targeting on the IKKß to discover anti-inflammatory drugs has been launched for ten years, due to its predominant role in canonical NF-κB signaling. In the current study, we identified a novel IKKß inhibitor, ellipticine (ELL), an alkaloid isolated from Ochrosia elliptica and Rauvolfia sandwicensis. We found that ELL reduced the secretion and mRNA expression of TNF-α and IL-6 and decreased the protein expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in bone marrow derived macrophages (BMDMs) stimulated with LPS. In coincided with the results, ELL suppressed PGE2 and NO production in BMDMs. Underlying mechanistic study showed that ELL inhibited IκBα phosphorylation and degradation as well as NF-κB nuclear translocation, which was attributed to suppression of IKKα/ß activation. Furthermore, kinase assay and binding assay results indicated that ELL inhibited IKKß activity via directly binding to IKKß and in turn resulted in suppression of NF-κB signaling. To identify the binding sites of ELL on IKKß, IKKßC46A plasmid was prepared and the kinase assay was performed. The results demonstrated that the inhibitory effect of ELL on IKKß activity was impaired in the mutation, implying that anti-inflammatory effect of ELL was partially attributed to binding on cysteine 46. Furthermore, ELL up-regulated LC3 II expression and reduced p62 expression, suggesting that autophagy induction contributed to the anti-inflammatory effect of ELL as well. In coincided with the in vitro results, ELL increased the survival and antagonized the hypothermia in the mice with LPS-induced septic shock. Consistently, ELL reduced TNF-α and IL-6 production in the serum of the mice treated with LPS. Collectively, our study provides evidence that ELL is an IKKß inhibitor and has potential to be developed as a lead compound for treatment inflammatory diseases in the future.


Assuntos
Anti-Inflamatórios/uso terapêutico , Elipticinas/uso terapêutico , Quinase I-kappa B/antagonistas & inibidores , Inflamação/tratamento farmacológico , Choque Séptico/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Descoberta de Drogas , Elipticinas/química , Elipticinas/farmacologia , Feminino , Humanos , Quinase I-kappa B/imunologia , Inflamação/imunologia , Camundongos , Ochrosia/química , Choque Séptico/imunologia
7.
Free Radic Biol Med ; 115: 471-483, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233793

RESUMO

Licochalcone A (LCA) is derived from glycyrrhizae radix with antimicrobial, antitumor and anti-inflammatory activities. However, the anti-arthritic function of LCA and underlying mechanism has not been yet explored. The current study investigated the anti-arthritic effect of LCA and elucidated the underlying mechanism. The results showed that LCA significantly suppressed arthritis via the activation of SQSTM1 (p62)/nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling in the collagen-induced arthritis (CIA) model of DBA mice. In coincided with the results, this anti-arthritic effect of LCA was remarkably diminished in the collagen antibody-induced arthritis (CAIA) model of Nrf2-/- mice. These findings indicate that p62/Nrf2 signaling is a crucial pathway for the induction and treatment of arthritis. To further validate the effect of LCA on the arthritis, rheumatoid arthritis synovial fibroblasts (RASFs) isolated from the synovium of RA patients were employed in the study. In coincided with in vivo results, LCA inhibited the cell proliferation and arrested the cell cycle, induced apoptosis, suppressed pro-inflammatory cytokine secretion and increased expression of antioxidant enzymes via the activation of Keap1-Nrf2 signaling by enhancing p62 phosphorylation and expression, Nrf2 accumulation and Nrf2 nucleus translocation. Findings in the current study provide evidence that p62-Keap1-Nrf2 axis is a pivotal signaling pathway in development of arthritis and therapeutic efficacy of drugs, and LCA activates of Keap1-Nrf2 signaling to suppress arthritis by phosphorylation of p62 at Ser349. Collectively, LCA is valuable to be further investigated as a lead compound for application in anti-arthritis, and interference with the interaction between Nrf2 and Keap1 by phosphorylation of p62 may be a promising strategy for the discovery of anti-arthritic agents.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Chalconas/uso terapêutico , Fibroblastos/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Glycyrrhiza/imunologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fosforilação , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
8.
Carbohydr Polym ; 151: 364-372, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474578

RESUMO

Extraction optimization, purification, characterization, sulfation and antitumor activity of polysaccharides from the fruit body of Borojoa sorbilis cuter were investigated in present study. The optimal Ultrahigh Pressure extraction condition was determined as: extraction once with the solid-liquid ratio of 1:10 in 30°C and 1500Mpa for crude polysaccharide (BP) and experimental yield was 8.28%. Four water-soluble polysaccharides named as BP1-1, BP1-2, BP1-3 and BP1-4, with molecular weight of 35.8, 32.4, 30.1 and 27.7kDa, were purified by DEAE Sepharose and Superdex 200 chromatography. On the basis of chemical and spectroscopic analyses, BP1-1-BP1-4 were found to be neutral ß-d-galactan containing a (1→4)-linked backbone. S-BP1s with the DSS of 1.18, was sulfated by chloro-sulfonic acid-pyridine method. Furthermore, S-BP1s exhibited significant in vitro antitumor activity against liver cancer HepG2 and lung cancer A549 cells in a dose-dependent manner. The results indicated that S-BP1s could be potentially developed as functional antitumor drug.


Assuntos
Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Rubiaceae/química , Ácidos Sulfônicos/química , Células A549 , Antineoplásicos/farmacologia , Cromatografia/métodos , Frutas/química , Células Hep G2 , Humanos , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA