Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioengineered ; 13(4): 10914-10930, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35499161

RESUMO

Liver fibrosis occurs following inflammation triggered by the integrated actions of activated liver-resident macrophages (Kupffer cells) and hepatic stellate cells (HSCs), and the multiplicity of these mechanisms complicates drug therapy. Here, we demonstrate that the selective bromodomain and extra-terminal (BET) bromodomain inhibitor compound38 can block both the Janus kinase-signal transducer and activator of transcription and mitogen-activated protein kinase signaling pathways in macrophages, which decreased their secretion of proinflammatory cytokines in a dose-dependent manner. The inactivation of macrophages attenuated lipopolysaccharide-induced injurious inflammation concurrent with a reduction in F4/80+ cells, proinflammatory cytokine levels, and neutrophil infiltration. Moreover, compound 38 inhibited the Wnt/ß-catenin and transforming growth factor-beta/SMAD signaling pathways to abolish the activation of HSCs. In vivo, compound 38 significantly decreased the collagen deposition and fibrotic area of a CCl4-induced liver fibrosis model, and restored the deficiency of activated HSCs and the upregulation of liver inflammation. These results highlight the potential role of compound 38 in treating liver fibrosis considering its simultaneous inhibitory effects on liver inflammation and related fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Citocinas/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Inflamação/metabolismo , Cirrose Hepática/tratamento farmacológico , Macrófagos/metabolismo
2.
Acta Pharmacol Sin ; 43(2): 457-469, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33850273

RESUMO

Mantle cell lymphoma (MCL) is a lymphoproliferative disorder lacking reliable therapies. PI3K pathway contributes to the pathogenesis of MCL, serving as a potential target. However, idelalisib, an FDA-approved drug targeting PI3Kδ, has shown intrinsic resistance in MCL treatment. Here we report that a p300/CBP inhibitor, A-485, could overcome resistance to idelalisib in MCL cells in vitro and in vivo. A-485 was discovered in a combinational drug screening from an epigenetic compound library containing 45 small molecule modulators. We found that A-485, the highly selective catalytic inhibitor of p300 and CBP, was the most potent compound that enhanced the sensitivity of MCL cell line Z-138 to idelalisib. Combination of A-485 and idelalisib remarkably decreased the viability of three MCL cell lines tested. Co-treatment with A-485 and idelalisib in Maver-1 and Z-138 MCL cell xenograft mice for 3 weeks dramatically suppressed the tumor growth by reversing the unsustained inhibition in PI3K downstream signaling. We further demonstrated that p300/CBP inhibition decreased histone acetylation at RTKs gene promoters and reduced transcriptional upregulation of RTKs, thereby inhibiting the downstream persistent activation of MAPK/ERK signaling, which also contributed to the pathogenesis of MCL. Therefore, additional inhibition of p300/CBP blocked MAPK/ERK signaling, which rendered maintaining activation to PI3K-mTOR downstream signals p-S6 and p-4E-BP1, thus leading to suppression of cell growth and tumor progression and eliminating the intrinsic resistance to idelalisib ultimately. Our results provide a promising combination therapy for MCL and highlight the potential use of epigenetic inhibitors targeting p300/CBP to reverse drug resistance in tumor.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Linfoma de Célula do Manto/tratamento farmacológico , Purinas/uso terapêutico , Quinazolinonas/uso terapêutico , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Sinergismo Farmacológico , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Camundongos , Transplante de Neoplasias
3.
Acta Pharmacol Sin ; 43(2): 470-482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33850276

RESUMO

Aerobic glycolysis, also known as the Warburg effect, is a hallmark of cancer cell glucose metabolism and plays a crucial role in the activation of various types of immune cells. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of D-glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate in the 6th critical step in glycolysis. GAPDH exerts metabolic flux control during aerobic glycolysis and therefore is an attractive therapeutic target for cancer and autoimmune diseases. Recently, GAPDH inhibitors were reported to function through common suicide inactivation by covalent binding to the cysteine catalytic residue of GAPDH. Herein, by developing a high-throughput enzymatic screening assay, we discovered that the natural product 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose (PGG) is an inhibitor of GAPDH with Ki = 0.5 µM. PGG blocks GAPDH activity by a reversible and NAD+ and Pi competitive mechanism, suggesting that it represents a novel class of GAPDH inhibitors. In-depth hydrogen deuterium exchange mass spectrometry (HDX-MS) analysis revealed that PGG binds to a region that disrupts NAD+ and inorganic phosphate binding, resulting in a distal conformational change at the GAPDH tetramer interface. In addition, structural modeling analysis indicated that PGG probably reversibly binds to the center pocket of GAPDH. Moreover, PGG inhibits LPS-stimulated macrophage activation by specific downregulation of GAPDH-dependent glucose consumption and lactate production. In summary, PGG represents a novel class of GAPDH inhibitors that probably reversibly binds to the center pocket of GAPDH. Our study sheds new light on factors for designing a more potent and specific inhibitor of GAPDH for future therapeutic applications.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Taninos Hidrolisáveis/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/antagonistas & inibidores , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos Organometálicos , Reação em Cadeia da Polimerase em Tempo Real
4.
Acta Pharmacol Sin ; 43(4): 941-953, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34341511

RESUMO

Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease that is increasingly prevalent worldwide. Liver inflammation is an important contributor to disease progression from nonalcoholic fatty liver (NAFL) to NASH, but there is a lack of efficient therapies. In the current study we evaluated the therapeutic potential of givinostat, a histone deacetylase (HDAC) inhibitor, in the treatment of NASH in vivo and in vitro. Liver inflammation was induced in mice by feeding a methionine- and choline-deficient diet (MCD) or a fructose, palmitate, cholesterol diet (FPC). The mice were treated with givoinostat (10 mg·kg-1·d-1, ip) for 8 or 10 weeks. At the end of the experiment, the livers were harvested for analysis. We showed that givoinostat administration significantly alleviated inflammation and attenuated hepatic fibrosis in MCD-induced NASH mice. RNA-seq analysis of liver tissues form MCD-fed mice revealed that givinostat potently blocked expression of inflammation-related genes and regulated a broad set of lipid metabolism-related genes. In human hepatocellular carcinoma cell line HepG2 and human derived fetal hepatocyte cell line L02, givinostat significantly decreased palmitic acid-induced intracellular lipid accumulation. The benefit of givinostat was further confirmed in FPC-induced NASH mice. Givinostat administration significantly attenuated hepatic steatosis, inflammation as well as liver injury in this mouse model. In conclusion, givinostat is efficacious in reversing diet-induced NASH, and may serve as a therapeutic agent for the treatment of human NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Carbamatos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Fígado/metabolismo , Cirrose Hepática/patologia , Metionina , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
5.
Acta Pharmacol Sin ; 41(2): 286-292, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31253937

RESUMO

The cAMP-responsive element binding protein (CREB) binding protein (CBP) and adenoviral E1A-binding protein (P300) are two closely related multifunctional transcriptional coactivators. Both proteins contain a bromodomain (BrD) adjacent to the histone acetyl transferase (HAT) catalytic domain, which serves as a promising drug target for cancers and immune system disorders. Several potent and selective small-molecule inhibitors targeting CBP BrD have been reported, but thus far small-molecule inhibitors targeting BrD outside of the BrD and extraterminal domain (BET) family are especially lacking. Here, we established and optimized a TR-FRET-based high-throughput screening platform for the CBP BrD and acetylated H4 peptide. Through an HTS assay against an in-house chemical library containing 20 000 compounds, compound DC_CP20 was discovered as a novel CBP BrD inhibitor with an IC50 value of 744.3 nM. This compound bound to CBP BrD with a KD value of 4.01 µM in the surface plasmon resonance assay. Molecular modeling revealed that DC_CP20 occupied the Kac-binding region firmly through hydrogen bonding with the conserved residue N1168. At the celluslar level, DC_CP20 dose-dependently inhibited the proliferation of human leukemia MV4-11 cells with an IC50 value of 19.2 µM and markedly downregulated the expression of the c-Myc in the cells. Taken together, the discovery of CBP BrD inhibitor DC_CP20 provides a novel chemical scaffold for further medicinal chemistry optimization and a potential chemical probe for CBP-related biological function research. In addition, this inhibitor may serve as a promising therapeutic strategy for MLL leukemia by targeting CBP BrD protein.


Assuntos
Antineoplásicos/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Leucemia/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração Inibidora 50 , Leucemia/patologia , Modelos Moleculares , Domínios Proteicos , Bibliotecas de Moléculas Pequenas
6.
World J Gastroenterol ; 22(11): 3242-51, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004002

RESUMO

AIM: To assess the value of gemstone spectral imaging (GSI) in efficacy evaluation in hepatocellular cancer (HCC) after transcatheter arterial chemoembolization (TACE) treatment. METHODS: Thirty patients with HCC underwent GSI, including nonenhanced, arterial, portalvenous and delayed phase scans, after TACE treatment. Arterial phase images were acquired with GSI for reconstruction of virtual nonenhanced images and color overlay images. Digital subtraction angiography (DSA) was performed in all these patients. Two blinded and independent readers evaluated the data in two reading sessions; standard nonenhanced, arterial, portalvenous, and delayed phase images were read in session A, and the optimal monochromatic images, iodine/water based images and spectrum features were read in session B. Sensitivity and specificity were calculated with the DSA data as the reference standard. The sensitivity and specificity were compared using the χ (2) test. RESULTS: DSA revealed 154 lesions in 30 patients, and 100 of them had blood supply. Overall sensitivity and specificity were 72% (72/100) and 77.8% (42/54) for session A, and 97% (97/100) and 94.4% (51/54) for session B, respectively. The sensitivity and specificity of the two reading sessions were significantly different (χ (2) = 23.04, χ (2) = 7.11, P < 0.05). CONCLUSION: Compared with conventional CT, GSI could significantly improve the detection of small and multiple lesions without increasing the radiation dose. Based on spectrum features, GSI could assess tumor homogeneity and more accurately identify residual tumors and recurrent or metastatic lesions during efficacy evaluation and follow-up in HCC after TACE treatment.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Angiografia Digital , Distribuição de Qui-Quadrado , Meios de Contraste , Feminino , Humanos , Iohexol , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento
7.
Zhongguo Zhong Yao Za Zhi ; 41(15): 2922-2926, 2016 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-28914038

RESUMO

Neobavaisoflavone is one of flavonoids of traditional Chinese medicine Psoralea corylifolial. It has numerous biological properties such as antibacterial, anti-inflammatory, anti-cancer, and anti-osteoporosis effects. This paper aimed to investigate the absorption mechanism of neobavaisoflavone in Caco-2 cell monolayer model. The analyte and osalmide were separated on Thermo Syncronis C18 column with methanol-0.1% formic acid solution (90∶10) as the mobile phase, at a flow rate of 0.2 mL•min⁻¹. The concentration of neobavaisoflavone was determined in eletrospray ionization(ESI) positive ion mode with osalmide as an the internal standard. The effects of time, concentration, P-gp inhibitor verapamil, MRP-2 inhibitor MK-571 and BCRP inhibitor Ko143 on the absorption of neobavaisoflavone were investigated. According to the results, neobavaisoflavone showed a good linearity within the concentration of 10-2 000 µg•L⁻¹, and the results of its specificity, matrix effect, extraction recovery, precision, accuracy and stability all met the requirements. In the Caco-2 cell monolayer model, the transport volume of neobavaisoflavone was correlated positively with the time and concentration. The ER values of 15, 30, 50 µmol•L⁻¹ neobavaisoflavone were 1.64, 1.94,0.99, respectively. As compared with the control group, all of verapamil hyduochloride, MK-571 and Ko143 could promote the transportation of neobavaisoflavone, and the effect was more obvious in verapamil hyduochloride and Ko143. The absorption of neobavaisoflavone may be mainly of active transport in Caco-2 cell monolayer model, and also involve passive transport. Excretion mechanism of intestinal transport protein may be also involved.


Assuntos
Isoflavonas/farmacocinética , Transporte Biológico , Células CACO-2 , Dicetopiperazinas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Absorção Intestinal , Proteína 2 Associada à Farmacorresistência Múltipla , Propionatos/farmacologia , Quinolinas/farmacologia
8.
Am J Hum Genet ; 85(2): 194-203, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19664746

RESUMO

Nasopharyngeal carcinoma (NPC) is a multifactorial malignancy closely associated with genetic factors and Epstein-Barr virus infection. To identify the common genetic variants linked to NPC susceptibility, we conducted a genome-wide association study (GWAS) in 277 NPC patients and 285 healthy controls within the Taiwanese population, analyzing 480,365 single-nucleotide polymorphisms (SNPs). Twelve statistically significant SNPs were identified and mapped to chromosome 6p21.3. Associations were replicated in two independent sets of case-control samples. Two of the most significant SNPs (rs2517713 and rs2975042; p(combined) = 3.9 x 10(-20) and 1.6 x 10(-19), respectively) were located in the HLA-A gene. Moreover, we detected significant associations between NPC and two genes: specifically, gamma aminobutyric acid b receptor 1 (GABBR1) (rs29232; p(combined) = 8.97 x 10(-17)) and HLA-F (rs3129055 and rs9258122; p(combined) = 7.36 x 10(-11) and 3.33 x 10(-10), respectively). Notably, the association of rs29232 remained significant (residual p < 5 x 10(-4)) after adjustment for age, gender, and HLA-related SNPs. Furthermore, higher GABA(B) receptor 1 expression levels can be found in the tumor cells in comparison to the adjacent epithelial cells (p < 0.001) in NPC biopsies, implying a biological role of GABBR1 in NPC carcinogenesis. To our knowledge, it is the first GWAS report of NPC showing that multiple loci (HLA-A, HLA-F, and GABBR1) within chromosome 6p21.3 are associated with NPC. Although some of these relationships may be attributed to linkage disequilibrium between the loci, the findings clearly provide a fresh direction for the study of NPC development.


Assuntos
Carcinoma/genética , Cromossomos Humanos Par 6 , Estudo de Associação Genômica Ampla , Antígenos HLA/genética , Neoplasias Nasofaríngeas/genética , Alelos , Povo Asiático/genética , Povo Asiático/estatística & dados numéricos , Carcinoma/imunologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Frequência do Gene , Haplótipos , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imuno-Histoquímica , Desequilíbrio de Ligação , Masculino , Neoplasias Nasofaríngeas/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Taiwan
9.
Ann N Y Acad Sci ; 1042: 314-24, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15965077

RESUMO

Female Wistar rats were subjected to 380 mmHg in an altitude chamber for 15 h/day for 28 days. Hypoxic preconditioning attenuated kainic acid (KA)-induced oxidative injury, including KA-elevated lipid peroxidation and neuronal loss in rat hippocampus. Furthermore, KA-induced translocation of cytochrome c and apoptosis-inducing factor from mitochondria to cytosol was attenuated in the hypoxic rats. In addition, hypoxic preconditioning attenuated the KA-induced reduction in glutathione content and superoxide dismutase as well as KA-induced increase in glutathione peroxidase. Although local infusion of KA increased hippocampal NF-kappaB binding activity in the normoxic rat, hypoxia further enhanced KA-elevated NF-kappaB binding activity. Moreover, hypoxic preconditioning potentiated the KA-induced increase in Bcl-2 level in the lesioned hippocampus. Our data suggest that hypoxic preconditioning exerts its neuroprotection of KA-induced oxidative injury via enhancing NF-kappaB activation, upregulating the antioxidative defense system, and attenuating the apoptotic process.


Assuntos
Lesões Encefálicas/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipóxia/metabolismo , Ácido Caínico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Feminino , Hematócrito , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Endogâmicos WKY
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA