Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Int Immunopharmacol ; 124(Pt B): 110974, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757633

RESUMO

CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study NAMALWA xenograft model showed that IL-7-stimulated CAR-T cells possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.


Assuntos
MicroRNAs , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Interleucina-7/genética , Interleucina-7/metabolismo , MicroRNAs/genética , Proliferação de Células , Antígenos CD19/genética , Antígenos CD19/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
3.
Int J Gen Med ; 16: 4235-4248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745137

RESUMO

Background: Nucleolar and spindle-associated protein 1 (NUSAP1) plays key roles in microtubules and chromosomes in normal cells both structurally and functionally. In malignancies, NUSAP1 is frequently dysregulated and mutated. However, the expression profiles and biological functions of NUSAP1 in tumors remain unclear. Methods: NUSAP1 expression in BALB/c mice and human normal or tumor tissues was examined using immunohistochemistry. Kaplan-Meier survival analysis was utilized to assess the prognostic significance of NUSAP1 in tumors, and principal component analysis and co-expression analysis were performed to explore the unique roles of NUSAP1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed with DAVID. The relevance between NUSAP1 and tumor-infiltrating immune cells was investigated using TIMER. A transcriptional regulation network was constructed using data from The Cancer Genome Atlas. Results: NUSAP1 expression levels in various mice tissues were different. Compared with normal tissues, NUSAP1 was strongly expressed in several human tumor tissues. We believe that NUSAP1 distinctly impacts the prognosis of several cancers and plays various roles in thymoma and testicular germ cell tumors. Further, NUSAP1 expression levels were significantly positively associated with diverse infiltrating levels of immune cells, including B cells, CD4+ and CD8+ T cells, dendritic cells, and macrophages, in thymoma. The expression level of NUSAP1 demonstrated strong relevance with various immune markers in thymoma. Finally, the miR-1236-5p-NUSAP1 and TCF3-NUSAP1 network revealed the tumor-promoting role of NUSAP1 and pertinent underlying mechanisms in human liver hepatocellular carcinoma. Conclusion: NUSAP1 may be regarded as a therapeutic target or potential prognostic biomarker for various cancer types.

4.
Front Immunol ; 13: 1064874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505456

RESUMO

Background: Clinically, only a minority of patients benefit from immunotherapy and few efficient biomarkers have been identified to distinguish patients who would respond to immunotherapy. The tumor microenvironment (TME) is reported to contribute to immunotherapy response, but details remain unknown. We aimed to construct a prognostic model based on the TME of lung adenocarcinoma (LUAD) to predict the prognosis and immunotherapy efficacy. Methods: We integrated computational algorithms to describe the immune infiltrative landscape of LUAD patients. With the least absolute shrinkage and selection operator (LASSO) and Cox regression analyses, we developed a LUAD tumor microenvironment prognostic signature (LATPS). Subsequently, the immune characteristics and the benefit of immunotherapy in LATPS-defined subgroups were analyzed. RNA sequencing of tumor samples from 28 lung cancer patients treated with anti-PD-1 therapy was conducted to verify the predictive value of the LATPS. Results: We constructed the LATPS grounded on four genes, including UBE2T, KRT6A, IRX2, and CD3D. The LATPS-low subgroup had a better overall survival (OS) and tended to have a hot immune phenotype, which was characterized by an elevated abundance of immune cell infiltration and increased activity of immune-related pathways. Additionally, tumor immune dysfunction and exclusion (TIDE) score was markedly decreased in the LATPS-low subgroup, indicating an enhanced opportunity to benefit from immunotherapy. Survival analysis in 28 advanced lung cancer patients treated with an anti-PD-1 regimen at Nanfang hospital revealed that the LATPS-low subgroup had better immunotherapy benefit. Conclusion: LATPS is an effective predictor to distinguish survival, immune characteristics, and immunotherapy benefit in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Microambiente Tumoral , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Enzimas de Conjugação de Ubiquitina
5.
Hum Cell ; 35(6): 1856-1868, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36018458

RESUMO

Novel and accurate biomarkers are needed for early detection and progression evaluation of hepatocellular carcinoma (HCC). Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) has been studied in cancer biology; however, the expression pattern and biological function of PPP1R1A in HCC are unclear. The differentially expressed genes (DEGs) in HCC were screened by The Cancer Genome Atlas (TCGA) database. Real-time PCR and immunohistochemistry (IHC) assay were used to detect the expression of PPP1R1A in BALB/c mice, human normal tissues and corresponding tumor tissues, especially HCC. Then, Kaplan-Meier analysis of patients with HCC was performed to evaluate the relationship between PPP1R1A expression and prognosis. The transcriptional regulatory network of PPP1R1A was constructed based on the differentially expressed mRNAs, microRNAs and transcription factors (TFs). To explore the downstream regulation of PPP1R1A, the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and immune infiltration score were performed. A total of 4 DEGs were screened out. PPP1R1A was differentially distributed and expressed in BALB/c mice and human tissues. PPP1R1A expression was higher in normal tissues than that in tumor tissues, and patients with higher PPP1R1A expression had better clinical outcome in HCC. In addition, we constructed miR-21-3p/TAL1/PPP1R1A transcriptional network. Furthermore, PPP1R1A may modulate the activation of PI3K-Akt pathway, cell cycle, glycogen metabolism and the recruitment of M2 macrophage in HCC. This study may help to clarify the function and mechanism of PPP1R1A in HCC and provide a potential biomarker for tumor prevention and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Glicogênio/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética
6.
Phytother Res ; 36(12): 4587-4603, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35916377

RESUMO

Andrographolide(ADE) has been demonstrated to inhibit tumor growth through direct cytotoxicity on tumor cells. However, its potential activity on tumor microenvironment (TME) remains unclear. Tumor-associated macrophages (TAMs), composed mainly of M2 macrophages, are the key cells that create an immunosuppressive TME by secretion of cytokines, thus enhancing tumor progression. Re-polarized subpopulations of macrophages may represent vital new therapeutic alternatives. Our previous studies showed that ADE possessed anti-metastasis and anoikis-sensitization effects. Here, we demonstrated that ADE significantly suppressed M2-like polarization and enhanced M1-like polarization of macrophages. Moreover, ADE inhibited the migration of M2 and tube formation in HUVECs under M2 stimulation. In vivo studies showed that ADE restrained the growth of MDA-MB-231 and HCC1806 human breast tumor xenografts and 4T-1 mammary gland tumors through TAMs. Wnt5a/ß-catenin pathway and MMPs were particularly associated with ADE's regulatory mechanisms to M2 according to RNA-seq and bioinformatics analysis. Moreover, western blot also verified the expressions of these proteins were declined with ADE exposure. Among the cytokines released by M2, PDGF-AA and CCL2 were reduced. Our current findings for the first time elucidated that ADE could modulate macrophage polarization and function through Wnt5a signaling pathway, thereby playing its role in inhibition of triple-negative breast cancer.


Assuntos
Neoplasias da Mama , Diterpenos , Via de Sinalização Wnt , Feminino , Humanos , beta Catenina , Neoplasias da Mama/tratamento farmacológico , Microambiente Tumoral , Macrófagos Associados a Tumor , Diterpenos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Células MDA-MB-231 , Animais
7.
J Hepatol ; 76(5): 1138-1150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101526

RESUMO

BACKGROUND & AIMS: Copper (Cu) is an essential trace element whose serum levels have been reported to act as an effective indicator of the efficacy of radiotherapy. However, little is known about the role of Cu in radiotherapy. In this study we aimed to determine this role and investigate the precise mechanism by which Cu or Cu-related proteins regulate the radiosensitivity of hepatocellular carcinoma (HCC). METHODS: The expression and function of Cu and copper metabolism MURR1 domain 10 (COMMD10) were assessed via a Cu detection assay, immunostaining, real-time PCR, western blot, a radiation clonogenic assay and a 5-ethynyl-2'-deoxyuridine assay. Ferroptosis was determined by detecting glutathione, lipid peroxidation, malondialdehyde and ferrous ion (Fe) levels. The in vivo effects of Cu and COMMD10 were examined with Cu/Cu chelator treatment or lentivirus modification of COMMD10 expression in radiated mouse models. RESULTS: We identified a novel role of Cu in promoting the radioresistance of HCC cells. Ionizing radiation (IR) induced a reduction of COMMD10, which increased intracellular Cu and led to radioresistance of HCC. COMMD10 enhanced ferroptosis and radiosensitivity in vitro and in vivo. Mechanistically, low expression of COMMD10 induced by IR inhibited the ubiquitin degradation of HIF1α (by inducing Cu accumulation) and simultaneously impaired its combination with HIF1α, promoting HIF1α nuclear translocation and the transcription of ceruloplasmin (CP) and SLC7A11, which jointly inhibited ferroptosis in HCC cells. In addition, elevated CP promoted HIF1α expression by reducing Fe, forming a positive feedback loop. CONCLUSIONS: COMMD10 inhibits the HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe homeostasis in HCC. This work provides new targets and treatment strategies for overcoming radioresistance in HCC. LAY SUMMARY: Radiotherapy benefits patients with unresectable or advanced hepatocellular carcinoma (HCC), but its effectiveness is hampered by radioresistance. Herein, we uncovered a novel role for copper in promoting the radioresistance of HCCs. This work has revealed new targets and potential treatment strategies that could be used to sensitize HCC to radiotherapy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/radioterapia , Linhagem Celular Tumoral , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ferro/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Camundongos , Tolerância a Radiação/genética
8.
Clin Transl Immunology ; 11(1): e1368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35079378

RESUMO

OBJECTIVES: Even though postoperative chemotherapy can eliminate residual tumor cells in patients with colorectal cancer (CRC), severe adversity, weakened immunity and drug resistance are still problems. Adjuvant cytokine-induced killer (CIK) cell therapy is an alternative to CRC patients after surgery. The present study investigated the efficacy of adjuvant CIK cell therapy combined with chemotherapy in postoperative CRC patients. METHODS: This retrospective analysis included 137 postoperative CRC patients, including 71 who received adjuvant chemotherapy alone (control group) and 66 who received adjuvant immunotherapy based on CIK cells combined with chemotherapy (CIT group). RESULTS: Long-term follow-up study indicated that overall survival (OS) and progression-free survival (PFS) were significantly longer in the CIT group than in the control group. Subgroup analyses showed that CIT treatment significantly improved OS and PFS of CRC patients classified as stage II and N0 stage and in patients with primary tumors in the rectum. Increasing the number of CIK infusions resulted in better prognosis. CRC patients aged < 65 years were found to benefit more from CIT-based therapy than patients aged ≥ 65 years. A retrospective case-control study indicated that the primary tumor expression of signalling lymphocytes activating molecule family 7 (SLAMF7) was associated with increased efficacy of CIT treatment. CONCLUSIONS: Adjuvant CIT therapy was an effective therapeutic strategy for postoperative CRC patients prolonging OS and PFS. Patient age, tumor stage and expression of SLAMF7 may be potential indicators of the efficacy of CIT therapy.

10.
J Exp Clin Cancer Res ; 40(1): 87, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648530

RESUMO

BACKGROUND: Irradiation has emerged as a valid tool for nasopharyngeal carcinoma (NPC) in situ treatment; however, NPC derived from tissues treated with irradiation is a main cause cancer-related death. The purpose of this study is to uncover the underlying mechanism regarding tumor growth after irradiation and provided potential therapeutic strategy. METHODS: Fibroblasts were extracted from fresh NPC tissue and normal nasopharyngeal mucosa. Immunohistochemistry was conducted to measure the expression of α-SMA and FAP. Cytokines were detected by protein array chip and identified by real-time PCR. CCK-8 assay was used to detect cell proliferation. Radiation-resistant (IRR) 5-8F cell line was established and colony assay was performed to evaluate tumor cell growth after irradiation. Signaling pathways were acquired via gene set enrichment analysis (GSEA). Comet assay and γ-H2AX foci assay were used to measure DNA damage level. Protein expression was detected by western blot assay. In vivo experiment was performed subcutaneously. RESULTS: We found that radiation-resistant NPC tissues were constantly infiltrated with a greater number of cancer-associated fibroblasts (CAFs) compared to radiosensitive NPC tissues. Further research revealed that CAFs induced the formation of radioresistance and promoted NPC cell survival following irradiation via the IL-8/NF-κB pathway to reduce irradiation-induced DNA damage. Treatment with Tranilast, a CAF inhibitor, restricted the survival of CAF-induced NPC cells and attenuated the of radioresistance properties. CONCLUSIONS: Together, these data demonstrate that CAFs can promote the survival of irradiated NPC cells via the NF-κB pathway and induce radioresistance that can be interrupted by Tranilast, suggesting the potential value of Tranilast in sensitizing NPC cells to irradiation.


Assuntos
Fibroblastos/metabolismo , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/genética , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/patologia , Análise de Sobrevida
11.
Rejuvenation Res ; 24(4): 283-293, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33607932

RESUMO

Umbilical cord mesenchymal stem cells (UCMSCs) have been identified as a potentially ideal cell type for use in regenerative therapeutic contexts owing to their excellent paracrine secretory abilities and other desirable properties. Previous work has shown that stem cell-derived exosomes can effectively reduce skin aging, but few studies have specifically focused on the role of UCMSC-derived exosomes in this context. In this study, we isolated exosomes derived from UCMSCs grown in a three-dimensional culture system and explored their ability to modulate the photo-aging of HaCaT keratinocytes. Cell viability and proliferation were assessed using CCK8 assay, whereas wound healing and transwell assays were used to assess cell migratory capabilities. UVB irradiation (60 mJ/cm2) was used to induce photo-aging of HaCaT cells. TUNEL and SA-ß-Gal staining were used to explore HaCaT cell apoptosis and senescence, respectively, whereas real-time quantitative PCR was used to assess the expression of relevant genes at the mRNA level. We found that UCMSC-derived exosomes were able to enhance normal HaCaT cell proliferation and migration while also inhibiting UVB-induced damage to these cells. These exosomes also reduced HaCaT cell apoptosis and senescence, increasing collagen type I expression and reducing matrix metalloproteinase (MMP1) expression in photo-aged HaCaT cells. Together, these findings indicate that UCMSC-derived exosomes have the potential to be used therapeutically to suppress skin aging.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Envelhecimento da Pele , Cordão Umbilical , Idoso , Proliferação de Células , Células HaCaT , Humanos , Cordão Umbilical/citologia
12.
J Cell Mol Med ; 25(2): 686-700, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225580

RESUMO

Adoptive immunotherapy is a new potential method of tumour therapy, among which anti-CD19 chimeric antigen receptor T-cell therapy (CAR-T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR-T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR-T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR-T cells expanded with anti-CD3/CD28 mAb-coated beads and those expanded with cell-based aAPCs expressing CD19/CD64/CD86/CD137L/mIL-15 counter-receptors were compared. The results showed that the number of CD19-specific CAR-T cells with a 4-1BB and CD28 co-stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR-T cells expanded with aAPCs comparing with the beads. Both CAR-T cells showed significant targeted tumoricidal effects. The CAR-T cells stimulated with aAPCs secreted apoptosis-related cytokines. Moreover, they also possessed marked anti-tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR-T cells genetically modified by piggyBac transposon system.


Assuntos
Antígenos CD19/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Western Blotting , Antígenos CD8/metabolismo , Linhagem Celular Tumoral , Eletroporação , Citometria de Fluxo , Humanos , Imunoterapia Adotiva/métodos , Células K562 , Masculino , Camundongos , Camundongos SCID , Plasmídeos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Oncol ; 10: 554331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178582

RESUMO

Carbohydrate sulfotransferase 4 (CHST4) plays an important role in lymphocyte homing and is abnormally expressed in several cancer types; however, its precise function in tumor development and progression is unknown. Here we confirm that CHST4 is aberrantly expressed in various tumor subtypes. In particular, we found that CHST4 expression was downregulated in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) tumors compared to paired normal tissue. We also showed that CHST4 overexpression inhibited the proliferation and metastasis of HCC cells in vitro. Clinically, CHST4 was identified as an independent prognostic factor for HBV-HCC patients. We further illuminated the anti-tumor role and mechanism of CHST4 in HBV-HCC by constructing a FENDRR-miR-10b-5p-CHST4 competing endogenous RNA network. We found that downregulation of CHST4 expression may promote HBV expression and regulate ribonucleoprotein complex biogenesis to promote malignant behaviors in HBV-HCC. CHST4 may also recruit CD4+ T cells, macrophages, dendritic cells, and neutrophils into the tumor microenvironment to inhibit the progression of HBV-HCC. Overall, our findings suggest that CHST4 acts as a tumor suppressor in HCC-HBV and represents a potential diagnostic and therapeutic target.

14.
Front Oncol ; 10: 557157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123469

RESUMO

Interferon-induced protein 44 (IFI44) containing a guanosine-5'-triphosphate (GTP) binding domain was reported to play a significant role in the immune response to autoimmune disease. However, its roles involved in cancers remain unclear. Here, we detected the expression of IFI44 in The Cancer Genome Atlas (TCGA) Pan-cancer and generally explored the effect of IFI44 on immune infiltration in the tumor microenvironment (TME). The results displayed that IFI44 was mainly located in the cytoplasm and overexpressed in head and neck squamous cell carcinoma (HNSC) samples compared with normal tissues. Survival analysis exhibited that IFI44 was remarkably associated with the clinical outcomes, particularly in lymph node-positive and locally advanced HNSC patients. Biological analysis showed that IFI44 was correlated with such immune biological processes as antigen-presenting and nuclear factor (NF)-kappa B signaling pathways. Immune signature analysis demonstrated that the expression of IFI44 was positively correlated with the infiltration of CD4+ cells and macrophages as well as neutrophils in HNSC. Taken together, these data suggested that IFI44 was abnormally expressed in cancer tissues and indicated the potential impact of IFI44 on the tumor immune infiltration in HNSC.

15.
J Transl Med ; 18(1): 355, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948197

RESUMO

BACKGROUND: Spectrin repeat containing nuclear envelope family member 3 (SYNE3) encodes an essential component of the linker of the cytoskeleton and nucleoskeleton (LINC) complex, namely nesprin-3. In a tumor, invasiveness and metastasis rely on the integrity of the LINC complex, while the role of SYNE3/nesprin-3 in cancer is rarely studied. METHODS: Here, we explored the expression pattern, prognostic value, and related mechanisms of SYNE3 through both experimental and bioinformatic methods. We first detected SYNE3 in BALB/c mice, normal human tissues, and the paired tumor tissues, then used bioinformatics databases to verify our results. We further analyzed the prognostic value of SYNE3. Next, we predicted miRNA targeting SYNE3 and built a competing endogenous RNA (ceRNA) network and a transcriptional network by analyzing data from the cancer genome atlas (TCGA) database. Interacting genes of SYNE3 were predicted, and we further performed GO and KEGG enrichment analysis on these genes. Besides, the relationship between SYNE3 and immune infiltration was also investigated. RESULTS: SYNE3 exhibited various expressions in different tissues, mainly located on nuclear and in cytoplasm sometimes. SYNE3 expression level had prognostic value in tumors, possibly by stabilizing nucleus, promoting tumor cells apoptosis, and altering tumor microenvironment. Additionally, we constructed a RP11-2B6.2-miR-149-5p-/RP11-67L2.2-miR-330-3p-SYNE3 ceRNA network and a SATB1-miR-149-5p-SYNE3 transcriptional network in lung adenocarcinoma to support the tumor-suppressing role of SYNE3. CONCLUSIONS: Our study explored novel anti-tumor functions and mechanisms of SYNE3, which might be useful for future cancer therapy.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Animais , Biologia Computacional , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos , Prognóstico , Microambiente Tumoral
16.
Gene ; 749: 144679, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32330536

RESUMO

BACKGROUND: Hepatocellular carcinoma is one of the most common cancers worldwide. HBV-related HCC has characteristics of faster progression and worse prognosis. Previous studies have confirmed that HBx protein plays numbers of important roles in development of HBV-HCC. However, the molecular mechanism of carcinogenicity of HBx is still not well documented. METHODS: Firstly, a HCC cell line over-expressing HBx was established and its function was verified. Subsequently, the differentially expressed genes were detected by transcriptome sequencing technology and use the Western Blot technology to detect the up-regulated genes in HBx overexpressed cells, and the functional correlation of the genes was analyzed. Finally, tissue microarray was used to correlate up-regulated gene with clinical follow-up data to verify correlation with clinical prognosis. RESULTS: Over-expression of HBx could promote cell proliferation, and over-expression of HBx could up-regulate the expression of S100A4 protein. ShRNA experiments showed that HBx promoted cell proliferation by upregulating the expression of S100A4. IFN-α2b can down-regulate the expression of S100A4 and inhibit the proliferation of HCC cells. The expression of S100A4 in cancer was significantly up-regulated compared with adjacent tissues, and was also significantly associated with tumors volume, the expression of PD-L1 and the survival time of patients with HCC. CONCLUSION: In general, S100A4 may be an effective therapeutic target for HBV-HCC. And the connection between S100A4 and HBV are not clear yet. This study may play a guiding role in the future clinical treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Transativadores/metabolismo , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Proliferação de Células , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína A4 de Ligação a Cálcio da Família S100/antagonistas & inibidores , Regulação para Cima , Proteínas Virais Reguladoras e Acessórias
17.
Biomed Res Int ; 2019: 1651805, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828088

RESUMO

Nuclear envelope spectrin repeat protein 3 (nesprin-3) is an evolutionarily-conserved structural protein, widely-expressed in vertebrate cells. Along with other nesprin family members, nesprin-3 acts as an essential component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Naturally, nesprin-3 shares many functions with LINC, including the localization of various cellular structures and bridging of the nucleoskeleton and cytoskeleton, observed in vitro. When nesprin-3 was knocked down in vivo, using zebrafish and mouse models, however, the animals were minimally affected. This paradoxical observation should not limit the physiological importance of nesprin-3, as recently, nesprin-3 has reignited the interest of the research community in studies on cancer cells migration. Moreover, nesprin-3 also plays an active role in certain developmental conditions such as adipogenesis and spermatogenesis, although more studies are needed. Meanwhile, the various protein binding partners of nesprin-3 should also be emphasized, as they are necessary for maintaining the structure of nesprin-3 and enabling it to carry out its various physiological and pathological functions. Nesprin-3 promises to further our understanding of these complex cellular events. Therefore, this review will focus on nesprin-3, examining it from a genetic, structural, and functional perspective. The final part of the review will in turn address the limitations of existing research and the future perspectives for the study of nesprin-3.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos
18.
J Cancer Res Clin Oncol ; 145(5): 1133-1146, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30805774

RESUMO

PURPOSE: Human mesenchymal stem cells (hMSCs) have been applied in a variety of therapies recently. However, the role of MSCs in tumor progression remains largely elusive. Some studies demonstrated that MSCs can promote tumor growth, while others had opposite results. Therefore, the lack of evidence about the effect of MSCs on tumor cells impedes its further use. METHODS: In the current study, hMSCs from amniotic membrane (hAMSCs) and umbilical cord (hUCMSCs) were used to evaluate the effects of MSCs on tumor development in vitro and in vivo. Two different animal models based on subcutaneous xenograft bearing nude mice and a murine experimental metastatic model were established for in vivo study. Moreover, cytokines regulated by MSCs co-cultured with cancer cells SPC-A-1 were also analyzed by cytokine array. RESULTS: Our results indicated that hUCMSCs not only did not promote proliferation in cancer cells, but also inhibited migration. In addition, they inhibited tube formation in human umbilical vein endothelial cells (HUVECs). Although hAMSCs also showed inhibitory effects on cancer cell motility, the proliferation of cancer cells was indeed enhanced. The in vivo data revealed that hUCMSCs did not promote tumor progression in lung adenocarcinoma and gastric carcinoma xenografts. Nevertheless, hAMSCs could do. The results from murine experimental metastatic model also demonstrated that neither hUCMSCs nor hAMSCs significantly enhanced the lung metastasis. The data from cytokine array showed that 11 inflammatory factors, 8 growth factors and 11 chemokines were remarkably secreted and changed. CONCLUSIONS: In view of the data from in vitro and in vivo studies, the exploitation of hUCMSCs in new therapeutic strategies should be safe compared to hAMSCs under malignant conditions. Moreover, this is the first report to systematically elucidate the possible molecular mechanisms involved in UCMSC- and AMSC-affected tumor growth and metastasis.


Assuntos
Âmnio/citologia , Comunicação Celular , Transformação Celular Neoplásica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citocinas/metabolismo , Modelos Animais de Doenças , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Camundongos , Metástase Neoplásica
19.
Tumour Biol ; 37(8): 10317-27, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26842926

RESUMO

Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos/imunologia , Gelatinases/imunologia , Imunoterapia/métodos , Proteínas de Membrana/imunologia , Serina Endopeptidases/imunologia , Microambiente Tumoral/imunologia , Animais , Western Blotting , Neoplasias da Mama/imunologia , Modelos Animais de Doenças , Endopeptidases , Feminino , Imunofluorescência , Imunização , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA