Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 71: 153239, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32447245

RESUMO

BACKGROUND AND PURPOSE: Multidrug resistance (MDR) remains the main obstacle in cancer treatment and overexpression of P-glycoprotein (P-gp) is one of the most common causes of chemoresistance. The development of novel P-gp inhibitors from natural products is a prospective strategy to combat MDR cancers. Among the natural sesquiterpene compounds, sesquiterpene pyridine alkaloids exhibit various biological properties. Therefore, in the present study, we evaluated the modulatory effects of wilforine on P-gp expression and function. The molecular mechanisms and kinetic models of wilforine-mediated P-gp inhibition were further investigated. METHODS: The human P-gp stable expression cells (ABCB1/Flp-InTM-293) and human cervical cancer cells (sensitive: HeLaS3; MDR: KBvin) were used. The cell viability was assessed by SRB assay. The inhibitory effect of wilforine on P-gp efflux and the underlying mechanism were evaluated by assays for calcein-AM uptake, rhodamine123 and doxorubicin efflux, ATPase activity, real-time quantitative RT-PCR, apoptosis, and cell cycle analysis. Molecular docking was performed by the docking software CDOCKER with BIOVIA Discovery Studio 4.5 (D.S. 4.5). RESULTS: We found that wilforine significantly inhibited the efflux activity of P-gp in a concentration-dependent manner. Further kinetic analysis demonstrated that wilforine significantly inhibited P-gp efflux function by competitive inhibition and stimulated the basal P-gp ATPase activity. In addition, wilforine re-sensitized MDR cancer cells to chemotherapeutic drugs. The docking model indicated that wilforine was bound to residues of P-gp such as LEU884, LYS887, THR176 and ASN172. CONCLUSION: These results suggest a novel future therapeutic strategy for MDR cancer using wilforine as an adjuvant treatment with chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lactonas/farmacologia , Piridinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células HeLa , Humanos , Cinética , Lactonas/química , Simulação de Acoplamento Molecular , Estudos Prospectivos , Piridinas/química
2.
Molecules ; 25(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936160

RESUMO

: Multidrug resistance (MDR) is a complicated ever-changing problem in cancer treatment, and P-glycoprotein (P-gp), a drug efflux pump, is regarded as the major cause. In the way of developing P-gp inhibitors, natural products such as phenolic acids have gotten a lot of attention recently. The aim of the present study was to investigate the modulating effects and mechanisms of caffeic acid on human P-gp, as well as the attenuating ability on cancer MDR. Calcein-AM, rhodamine123, and doxorubicin were used to analyze the interaction between caffeic acid and P-gp, and the ATPase activity of P-gp was evaluated as well. Resistance reversing effects were revealed by SRB and cell cycle assay. The results indicated that caffeic acid uncompetitively inhibited rhodamine123 efflux and competitively inhibited doxorubicin efflux. In terms of P-gp ATPase activity, caffeic acid exhibited stimulation in both basal and verapamil-stimulated activity. The combination of chemo drugs and caffeic acid resulted in decreased IC50 in ABCB1/Flp-InTM-293 and KB/VIN, indicating that the resistance was reversed. Results of molecular docking suggested that caffeic acid bound to P-gp through GLU74 and TRY117 residues. The present study demonstrated that caffeic acid is a promising candidate for P-gp inhibition and cancer MDR attenuation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ácidos Cafeicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Ácidos Cafeicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Quimioterapia Combinada , Fluoresceínas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodaminas/farmacologia , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA