Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Drug Resist ; 16: 5627-5635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662974

RESUMO

Purpose: Burkholderia cepacia complex (Bcc) is a known significant opportunistic pathogen causing morbidity and mortality, particularly in those with cystic fibrosis, chronic granulomatous disease, or immunocompromising host. Mortality of Bcc bloodstream infections among non-cystic fibrosis patients remained high. The antibiotic treatment for Bcc infection is quite challenging due to its intrinsic resistance to most antibiotics, and the resistance to carbapenems was the biggest concern among them. We aimed to realize the mechanism of carbapenem resistance in Bcc. Patients and Methods: Ten strains of Bcc were identified by the MALDI-TOF MS, and the drug susceptibility test was using VITEK 2 system. The Burkholderia cepacia complex genomes were sequenced via Nanopore GridIon. We also downloaded another ninety-five strains of Bcc from the National Center for Biotechnology Information database to evaluate the divergence between carbapenem-resistance and carbapenem-sensitive strains. Results: The genetic organization between carbapenem-sensitive and carbapenem-resistant strains of Bcc showed no difference. However, in the carbapenem-sensitive strain, E151V substitution in PenR was detected. In addition, a novel specific OXA family subgroup, blaOXA-1043 in Burkholderia cenocepacia was discovered. Conclusion: The E151V substitution in PenR may be associated with carbapenem-sensitive in Bcc. Moreover, the V151E mutation in PenR may be related to the activation of PenB, leading to Bcc resistance to carbapenems. Besides, a novel OXA family subgroup, blaOXA-1043, was found in Burkholderia cenocepacia, which differs from the previous OXA family.

2.
Biomed Res Int ; 2014: 306718, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140305

RESUMO

The compound 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)] was purified from the sap of the lacquer tree Rhus succedanea. HQ17(3) has cytotoxic effect on cancer cells and can inhibit topoisomerase (topo) IIα activity. We treated various cancer cells with different doses of HQ17(3) and found that leukemia cells were most sensitive to HQ17(3). After analysis of microRNA (miRNA) profiling, we found that treatment with HQ17(3) caused downregulation of miR-17-92 cluster in some leukemia cells. These changes partially restored the normal levels from leukemia-specific miRNA expression signature. Messenger RNAs of tumor suppressor proteins, such as pRB, PTEN, and Dicer, are targets of miR-17-92 cluster. Their protein levels were increased after the treatment. c-Myc is a regulatory protein for miR-17-92 gene. Similar to topo IIα, we found that c-Myc decreased its activity after the HQ17(3) treatment, which may explain the downregulation of miR-17-92 cluster. Combined with 5-fluorouracil, NaAsO2, or ABT-737, HQ17(3) elicited additive inhibitory effects on leukemia cells. In conclusion, the high sensitivity of leukemia cells to HQ17(3) may be associated with the reduction of topo IIα and c-Myc activities, as well as with the downregulation of the miR-17-92 cluster expression.


Assuntos
Hidroquinonas/administração & dosagem , Leucemia/tratamento farmacológico , Leucemia/genética , MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Antígenos de Neoplasias , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II , Proteínas de Ligação a DNA/antagonistas & inibidores , Fluoruracila/administração & dosagem , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA