Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 434(2): 113892, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104646

RESUMO

As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Histiocitose , Neoplasias , Humanos , Nucleotídeos/metabolismo , Mutação , Histiocitose/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo
2.
Cancers (Basel) ; 15(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36612296

RESUMO

Currently, research for hematological malignancies is very intensive, with many breakthroughs. Among them, aptamer-based targeted therapies could be counted. Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment. In this review, we try to summarize and provide the recent progress of aptamer research in the diagnosis and treatment of hematologic malignancies. Until now, 29 aptamer studies were reported in hematologic malignancies, of which 12 aptamers were tested in vivo and the remaining 17 aptamers were only tested in vitro. In this case, 11 aptamers were combined with chemotherapeutic drugs for the treatment of hematologic malignancies, 4 aptamers were used in combination with nanomaterials for the diagnosis and treatment of hematologic malignancies, and some studies used aptamers for the targeted transportation of siRNA and miRNA for targeted therapeutic effects. Their research provides multiple approaches to achieve more targeted goals. These findings show promising and encouraging future for both hematological malignancies basic and clinical trials research.

3.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408534

RESUMO

Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.


Assuntos
Leucemia Mieloide , Neoplasias , Diferenciação Celular , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais
4.
Cancer Med ; 9(9): 3174-3187, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32155325

RESUMO

To improve personalized diagnosis and prognosis for oral squamous cell carcinoma (OSCC) by identification of hub methylated-CpG sites and associated genes, weighted gene comethylation network analysis (WGCNA) was performed to examine and identify hub modules and CpG sites correlated with OSCC. Here, WGCNA modeling yielded blue and brown comethylation modules that were significantly associated with OSCC status. Following screening of the differentially expressed genes (DEGs) from gene expression microarrays and differentially methylated-CpG sites (DCGs), integrated multiomics analysis of the DEGs, DCGs, and hub CpG sites from the modules was performed to investigate their correlations. Expression levels of 16 CpG sites-associated genes were negatively correlated with methylation patterns of promoter. Moreover, Kaplan-Meier survival analysis of the hub CpG sites and associated genes was carried out using 2 public databases, MethSurv and GEPIA. Only 5 genes, ACTA1, ACTN2, OSR1, SYNGR1, and ZNF677, had significant overall survival using GEPIA. Hypermethylated-CpG sites ACTN2-cg21376883 and OSR1-cg06509239 were found to be associated with poor survival by MethSurv. Methylation status of specific site and expression levels of associated genes were determined using clinical samples by quantitative methylation-specific PCR and real-time PCR. Pearson's correlation analysis showed that methylation levels of cg06509239 and cg18335068 were negatively related to OSR1 and ZNF677 expression levels, respectively. Our classification schema using multiomics analysis represents a screening framework for identification of hub CpG sites and associated genes.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/genética , Estudos de Casos e Controles , Epigênese Genética , Humanos , Neoplasias Bucais/genética , Prognóstico , Regiões Promotoras Genéticas , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA