Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38739731

RESUMO

CONTEXT: Both physical activity (PA) and sedentary behavior (SB) exert important impact on type 2 diabetes, but it remains unclear how maximum impact on improving the mortality and optimized proportion of the two lifestyles combination exists. OBJECTIVE: To explore the impacts of PA/SB combinations on mortality in patients with diabetes. METHODS: Patients with type 2 diabetes patients samplings were collected from the National Health and Nutrition Examination Survey (NHANES) dataset. Their lifestyles were categorized into eight groups based on combinations of the PA and SB levels. Cox proportional hazards models were used to calculate hazard ratios and 95% confidence intervals. RESULTS: During the follow-up period, 1,148 deaths (18.94%) were recorded. High SB (sedentary time ≥6 hours/day) was significantly associated with higher all-cause mortality (HR 1.65). In participants with low SB (<6 hours/day), low PA was associated with lower all-cause mortality (HR 0.43), while further increase of PA level did not show further reduction in either all-cause or cardiovascular mortality. In contrast, in participants with high SB,all levels of PA were associated with lower all-cause mortality (p<0.05), but only moderate PA was associated with lower cardiovascular mortality (HR 0.30). CONCLUSIONS: In patients with type 2 diabetes, different combinations of various levels of PA and SB are associated with different degree of risk for all-cause or cardiovascular mortality.

2.
Int J Biol Sci ; 20(6): 2072-2091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617528

RESUMO

Background: It had been shown that selective cardiac vagal activation holds great potential for heart regeneration. Optogenetics has clinical translation potential as a novel means of modulating targeted neurons. This study aimed to investigate whether cardiac vagal activation via optogenetics could improve heart regenerative repair after myocardial infarction (MI) and to identify the underlying mechanism. Methods: We used an adeno-associated virus (AAV) as the vector to deliver ChR2, a light-sensitive protein, to the left nodose ganglion (LNG). To assess the effects of the cardiac vagus nerve on cardiomyocyte (CM) proliferation and myocardial regeneration in vivo, the light-emitting diode illumination (470 nm) was applied for optogenetic stimulation to perform the gain-of-function experiment and the vagotomy was used as a loss-of-function assay. Finally, sequencing data and molecular biology experiments were analyzed to determine the possible mechanisms by which the cardiac vagus nerve affects myocardial regenerative repair after MI. Results: Absence of cardiac surface vagus nerve after MI was more common in adult hearts with low proliferative capacity, causing a poor prognosis. Gain- and loss-of-function experiments further demonstrated that optogenetic stimulation of the cardiac vagus nerve positively regulated cardiomyocyte (CM) proliferation and myocardial regeneration in vivo. More importantly, optogenetic stimulation attenuated ventricular remodeling and improved cardiac function after MI. Further analysis of sequencing results and flow cytometry revealed that cardiac vagal stimulation activated the IL-10/STAT3 pathway and promoted the polarization of cardiac macrophages to the M2 type, resulting in beneficial cardiac regenerative repair after MI. Conclusions: Targeting the cardiac vagus nerve by optogenetic stimulation induced macrophage M2 polarization by activating the IL-10/STAT3 signaling pathway, which obviously optimized the regenerative microenvironment and then improved cardiac function after MI.


Assuntos
Interleucina-10 , Infarto do Miocárdio , Adulto , Humanos , Interleucina-10/genética , Optogenética , Infarto do Miocárdio/terapia , Nervo Vago , Miócitos Cardíacos
3.
FEBS J ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661680

RESUMO

Immune checkpoint inhibitors provide a definite survival benefit for patients with driver-negative advanced non-small cell lung cancer (NSCLC), but predictors of efficacy are still lacking. There may be a relationship between immune inflammatory state and tumor immune response. We explored the relationship of serum neutrophil extracellular traps (NETs) with infiltrating cells in the tumor tissues of patients with NSCLC as well as their relationship with the therapeutic efficacy of programmed cell death protein 1 (PD-1) inhibitors. Serum myeloperoxidase (MPO)-double-stranded DNA (dsDNA) was detected as a marker of NET serum concentration. T cells were detected by immunohistochemical staining, and neutrophils were counted by MPO immunofluorescence staining. Of the 31 patients with NSCLC, a longer progression-free survival after PD-1 inhibitor treatment was associated with higher levels of CD3+ T cells, a lower neutrophil : CD3+-T-cell ratio (NEU/CD3+) and lower neutrophil : CD8+-T-cell ratio (NEU/CD8+) in tumor tissues. Patients with higher serum NETs were more likely to develop progressive disease after treatment (P = 0.003) and to have immune-related adverse events (IrAEs) as well as higher NEU/CD3+ and NEU/CD8+. The combined model of serum NETs, CD8+ T cells, and tumor proportion score (TPS) significantly improved the prediction of PD-1 inhibitor efficacy [P = 0.033; area under the curve (AUC) = 0.881]. Our results indicate that serum NETs are effective predictors of PD-1 inhibitor response and reflect the tissue neutrophil-to-lymphocyte ratio and IrAE levels. The combined model of serum NETs, CD8+ T cells, and TPS is a powerful tool for predicting the efficacy of PD-1 inhibitor treatment in patients with NSCLC.

4.
J Adv Res ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043608

RESUMO

INTRODUCTION: Surgical ventricular reconstruction (SVR) is an alternative therapeutic approach in patients with refractory heart failure (HF), but residual remodeling after SVR limits the improvement of HF. Recently, we reported that SVR may act as an environmental cue to reactivate endogenous proliferation of cardiomyocytes; however, it is unclear whether enhancing endogenous cardiomyocyte regeneration further improves HF after SVR. OBJECTIVES: We aimed to explore whether circular RNAs (circRNAs) would involved in SVR and their mechanisms. METHODS: Male C57BL/6 mice were subjected to myocardial infarction (MI) or sham surgery. Four weeks later, MI mice with a large ventricular aneurysm underwent SVR or a second open-chest operation only. Echocardiography and histological analysis were used to evaluate heart function, cardiac remodeling, and myocardial regeneration. Sequencing of circular RNAs, RNA immunoprecipitation, RNA pulldown, and luciferase reporter assay were used to explore the underlying mechanisms. RESULTS: SVR markedly attenuated cardiac remodeling and induced cardiomyocyte regeneration, as evidenced by positive staining of Ki-67, phospho-histone H3 (pH3), and Aurora B in the plication zone, but significant residual remodeling still existed in comparison with the sham group. Sequencing results showed that SVR altered the expression profile of cardiac circRNAs, and circMap4k2 was identified as the most upregulated one. After characterizing circMap4k2, we noted that overexpression of circMap4k2 significantly promoted proliferation of cardiomyocytes in cultured neonatal rat cardiomyocytes and silencing of circMap4k2 significantly inhibited it; similar results were obtained in SVR-treated MI mice but not in MI mice without SVR treatment. Residual cardiac remodeling after SVR was further attenuated by circMap4k2 overexpression. CircMap4k2 bound with miR-106a-3p and inhibited cardiomyocyte proliferation by targeting a downstream effector of the antizyme inhibitor 1 (Azin1) gene. CONCLUSIONS: CircMap4k2 acts as an environmental cue and targets the miR-106a-3p/Azin1 pathway to increase cardiac regeneration in the plication zone and attenuate residual remodeling after SVR.

5.
Cancer Med ; 12(19): 19595-19606, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740601

RESUMO

BACKGROUND: Studies exploring whether metastatic organotropism and risk in gastric cancer (GC) differ by primary anatomical site are scarce. METHODS: This study included 15,260 and 1623 patients diagnosed with GC from the Surveillance, Epidemiology, and End Results (SEER) registry database and the Nanfang Hospital in China, respectively. Patients were stratified according to primary site of GC, and the incidence of metastasis to different organs was used to determine the metastatic organotropism for each GC subsite. Finally, the metastatic organotropism and risk were compared among the different subsite groups. RESULTS: Liver metastasis was the most common metastasis site in cardia GC, whereas other-site metastases were more common in the body, antrum, overlapping lesions, and unspecified GCs. Liver and other-site metastases were also frequently observed in the fundus, pylorus, lesser curvature, and greater curvature GCs. Patients with GC with definite primary tumor sites in the SEER and validation Nanfang hospital cohorts were compared by grouping as proximal and distal GCs for further analysis. In the SEER cohort, the top three metastatic sites of proximal GC were liver (21.4%), distant lymph node (LN) (14.6%), and other-site (mainly peritoneum, 11.9%), whereas those of distal GC were other-site (mainly peritoneum, 19.5%), liver (11.8%), and distant LN (9.5%). The incidence of metastasis to the liver, distant LN, lung, and brain was significantly higher in patients with proximal GC than in those with distal GC in both the SEER and Nanfang cohorts (p < 0.05). However, metastasis to other-site/peritoneum was significantly lower in patients with proximal GC compared to those with distal GC in the Nanfang Hospital and SEER cohorts, respectively (p < 0.05). CONCLUSION: Liver and distant LN are the preferred metastatic sites for proximal GC, whereas peritoneal metastasis is more common in distal GC. Proximal GC has a higher risk of lymphatic and hematogenous metastases, and a lower risk of transcoelomic metastasis than distal GC. Our findings highlight the need to stratify GC by its primary subsite to aid in planning and decision-making related to metastatic management in clinical practice.


Assuntos
Neoplasias Gástricas , Humanos , Estudos de Coortes , População do Leste Asiático , Prognóstico , Sistema de Registros/estatística & dados numéricos , Programa de SEER/estatística & dados numéricos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/patologia , Estados Unidos/epidemiologia , China
6.
Cell Mol Life Sci ; 80(9): 267, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626241

RESUMO

Previous studies show a woman's pregnancy is correlated with post-reproductive longevity, and nulliparity is associated with higher risk of incident heart failure, suggesting pregnancy likely exerts a cardioprotection. We previously reported a cardioprotective phenomenon termed myocardial hypertrophic preconditioning, but it is unknown whether pregnancy-induced physiological hypertrophic preconditioning (PHP) can also protect the heart against subsequent pathological hypertrophic stress. We aimed to clarify the phenomenon of PHP and its mechanisms. The pluripara mice whose pregnancy-induced physiological hypertrophy regressed and the nulliparous mice underwent angiotensin II (Ang II) infusion or transverse aortic constriction (TAC). Echocardiography, invasive left ventricular hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. Silencing or overexpression of Foxo3 by adeno-associated virus was used to investigate the role of FoxO3a involved in the antihypertrophic effect. Compared with nulliparous mice, pathological cardiac hypertrophy induced by Ang II infusion, or TAC was significantly attenuated and heart failure induced by TAC was markedly improved in mice with PHP. Activation of FoxO3a was significantly enhanced in the hearts of postpartum mice. FoxO3a inhibited myocardial hypertrophy by suppressing signaling pathway of phosphorylated glycogen synthase kinase-3ß (p-GSK3ß)/ß-catenin/Cyclin D1. Silencing or overexpression of Foxo3 attenuated or enhanced the anti-hypertrophic effect of PHP in mice with pathological stimulation. Our findings demonstrate that PHP confers resistance to subsequent hypertrophic stress and slows progression to heart failure through activation of FoxO3a/GSK3ß pathway.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Hormônios Peptídicos , Animais , Feminino , Camundongos , Gravidez , Angiotensina II , Cardiomegalia/genética , Glicogênio Sintase Quinase 3 beta/genética , Coração
7.
Cancer Res ; 83(21): 3577-3592, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610655

RESUMO

Bevacizumab is an anti-VEGF monoclonal antibody that plays an important role in the combination treatment of advanced colorectal cancer. However, resistance remains a major hurdle limiting bevacizumab efficacy, highlighting the importance of identifying a mechanism of antiangiogenic therapy resistance. Here, we investigated biophysical properties of the extracellular matrix (ECM) related to metabolic processes and acquired resistance to bevacizumab. Evaluation of paired pre- and posttreatment samples of liver metastases from 20 colorectal cancer patients treated with combination bevacizumab therapy, including 10 responders and 10 nonresponders, indicated that ECM deposition in liver metastases and a highly activated fatty acid oxidation (FAO) pathway were elevated in nonresponders after antiangiogenic therapy compared with responders. In mouse models of liver metastatic colorectal cancer (mCRC), anti-VEGF increased ECM deposition and FAO in colorectal cancer cells, and treatment with the FAO inhibitor etomoxir enhanced the efficacy of antiangiogenic therapy. Hepatic stellate cells (HSC) were essential for matrix stiffness-mediated FAO in colon cancer cells. Matrix stiffness activated lipolysis in HSCs via the focal adhesion kinase (FAK)/yes-associated protein (YAP) pathway, and free fatty acids secreted by HSCs were absorbed as metabolic substrates and activated FAO in colon cancer cells. Suppressing HSC lipolysis using FAK and YAP inhibition enhanced the efficacy of anti-VEGF therapy. Together, these results indicate that bevacizumab-induced ECM remodeling triggers lipid metabolic cross-talk between colon cancer cells and HSCs. This metabolic mechanism of bevacizumab resistance mediated by the physical tumor microenvironment represents a potential therapeutic target for reversing drug resistance. SIGNIFICANCE: Extracellular matrix stiffening drives bevacizumab resistance by stimulating hepatic stellate cells to provide fuel for mCRC cells in the liver, indicating a potential metabolism-based therapeutic strategy for overcoming resistance.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Neoplasias Hepáticas/patologia , Neoplasias Colorretais/patologia , Neoplasias do Colo/tratamento farmacológico , Células Estromais/metabolismo , Lipídeos , Microambiente Tumoral
8.
Mol Ther ; 31(9): 2662-2680, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37469143

RESUMO

Cancer metastatic organotropism is still a mystery. The liver is known to be susceptible to cancer metastasis and alcoholic injury. However, it is unclear whether and how alcohol facilitates liver metastasis and how to intervene. Here, we show that alcohol preferentially promotes liver metastasis in colon-cancer-bearing mice and post-surgery pancreatic cancer patients. The mechanism is that alcohol triggers an extra- and intrahepatic crosstalk to reshape an immunosuppressive liver microenvironment. In detail, alcohol upregulates extrahepatic IL-6 and hepatocellular IL-6 receptor expression, resulting in hepatocyte STAT3 signaling activation and downstream lipocalin-2 (Lcn2) upregulation. Furthermore, LCN2 promotes T cell-exhaustion neutrophil recruitment and cancer cell epithelial plasticity. In contrast, knocking out hepatocellular Stat3 or systemic Il6 in alcohol-treated mice preserves the liver microenvironment and suppresses liver metastasis. This mechanism is reflected in hepatocellular carcinoma patients, in that alcohol-associated signaling elevation in noncancerous liver tissue indicates adverse prognosis. Accordingly, we discover a novel application for BBI608, a small molecular STAT3 inhibitor that can prevent liver metastasis. BBI608 pretreatment protects the liver and suppresses alcohol-triggered premetastatic niche formation. In conclusion, under extra- and intrahepatic crosstalk, the alcoholic injured liver forms a favorable niche for cancer cell metastasis, while BBI608 is a promising anti-metastatic agent targeting such microenvironments.


Assuntos
Benzofuranos , Neoplasias Hepáticas , Camundongos , Animais , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
9.
Lab Invest ; 103(9): 100170, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150296

RESUMO

Epigenetic modification is involved in tumorigenesis and cancer progression. We developed an epigenetic modification-associated molecular classification of gastric cancer (GC) to identify signature genes that accurately predict prognosis and the efficacy of immunotherapy. Least absolute shrinkage and selection operator and multivariate Cox regression analysis were conducted to develop an epigenetic modification-associated molecular classification. We investigated the significance of PIP4P2, an independent prognostic factor of the classification system, in predicting the prognosis and immunotherapy efficacy of patients with GC. The epigenetic modification-associated molecular classification was highly associated with the clinicopathological characteristics of patients and the existing classification of GC. PIP4P2 was highly expressed in GC tissue and tumor-associated macrophages. High PIP4P2 expression in GC tissue-induced tumor progression by activating PI3K/AKT signal transduction had a negative impact on immunotherapy efficacy. High expression of PIP4P2 in macrophages was correlated with poor prognosis in patients with GC. PIP4P2 is an independent unfavorable prognostic factor of epigenetic modification-associated molecular classification, is involved in tumorigenic progression, and is essential for assessing the prognosis and immunotherapy efficacy of GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Fosfatidilinositol 3-Quinases , Carcinogênese , Epigênese Genética , Imunoterapia , Prognóstico
10.
BMC Cardiovasc Disord ; 23(1): 263, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208590

RESUMO

BACKGROUND: Preexisting impaired renal function (IRF) and contrast-induced nephropathy (CIN) after percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) are important prognostic parameters, but it is unknown whether delayed PCI is still beneficial for STEMI patients with IRF. METHODS: A retrospective single-center cohort study was performed in 164 patients who presented at least 12 h after symptom onset, and were diagnosed with STEMI and IRF. They were assigned to two groups to receive PCI plus optimal medical therapy (OMT) and OMT alone respectively. Clinical outcomes at 30 days and 1 year were compared between two groups, and hazard ratio for survival was analyzed using Cox regression model. A power analysis demanded 34 patients in each group to produce a power of 90% and a P value of 0.05. RESULTS: The 30-day mortality was significantly lower in PCI group (n = 126) than in non-PCI group (n = 38) (11.1% versus 28.9%, P = 0.018), while there was no significant difference in the 1-year mortality and incidence of cardiovascular comorbidities between the two groups. Cox regression analysis showed that patients with IRF didn't benefit from receiving PCI on survival rate (P = 0.267). CONCLUSIONS: Delayed PCI is not beneficial on one-year clinical outcomes for STEMI patients with IRF.


Assuntos
Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Estudos Retrospectivos , Estudos de Coortes , Intervenção Coronária Percutânea/efeitos adversos , Rim/fisiologia , Resultado do Tratamento
11.
Cancer Commun (Lond) ; 43(5): 562-581, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031362

RESUMO

BACKGROUND: Several clinical studies have uncovered a negative correlation between baseline tumor burden and the efficacy of immune checkpoint inhibitor (ICI) treatment. This study aimed to uncover the specific mechanisms underlying the difference in sensitivity to ICI treatment between tumors with high (HTB) and low (LTB) tumor burden. METHODS: For in vivo studies, several mouse models of subcutaneous tumors were established, and transcriptome sequencing, immunohistochemistry, and flow cytometry assays were used to detect the immune status in these subcutaneous tumors. For in vitro experiments, co-culture models, cytokine antibody arrays, western blotting, flow cytometry, and enzyme-linked immunosorbent assays were used to explore the underlying molecular mechanisms RESULTS: We found that MC38 or B16 subcutaneous tumors from the HTB group did not show any response to anti-programmed cell death protein-1 (PD-1) therapy. Through flow cytometry assays, we found that the infiltration with CD8+ T cells was significantly decreased whereas M2-like macrophages were enriched in subcutaneous tumors of HTB groups compared with those of LTB group. These changes were not affected by the initial number of injected tumor cells or tumor age, nor could they be reversed by surgical tumor reduction. Intraperitoneal colony-stimulating factor 1 receptor (CSF-1R) inhibitor PLX3397 injection at different time points of tumor growth only had an effect when administered in the early tumor stage to maintain the "heat" of the tumor microenvironment during the process of tumor growth, thereby achieving a response to ICI treatment when the tumor grew to a large size. Mechanistically, we found that insulin-like growth factor binding protein 2 (IGFBP2) expression levels were significantly elevated in HTB tumor tissues. IGFBP2 promoted the programmed death-ligand 1 (PD-L1) expression in M2-like macrophages by activating signal transducer and activator of transcription 3 (STAT3), and PD-L1+ M2-like macrophages exerted an immunosuppressive effect by inhibiting the proliferation and activation of CD8+ T cells in a PD-L1-dependent fashion. CONCLUSIONS: This study suggested that the low efficacy of ICI treatment in HTB tumors is mainly attributed to the intratumoral accumulation of PD-L1+ M2-like macrophages via the IGFBP2-STAT3-PD-L1 signaling pathway and their substantial inhibitory effects on T cell proliferation and activation.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Carga Tumoral
12.
Biomed Pharmacother ; 162: 114569, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001183

RESUMO

BACKGROUND: Right ventricular (RV) function is a major prognostic factor in patients with cardiopulmonary disease. Effective medical therapies are available for left heart failure, but they are usually less effective or even ineffective in right heart failure. Here, we tested the hypothesis that LCZ696 (sacubitril/valsartan) can attenuate pressure overload-induced RV remodeling by inhibiting pyruvate dehydrogenase kinase 4 (PDK4). METHODS: Adult male C57 mice were subjected to transverse aortic constriction (TAC), pulmonary artery constriction (PAC), or sham surgery. Bioinformatics analysis was used to screen for common differentially expressed genes (DEGs) between TAC and PAC. Chemical compounds targeting DEGs were predicted by molecular docking analysis. Effects of LCZ696 on PAC-induced RV remodeling and the associated PDK4-related mechanisms were investigated. RESULTS: We found 60 common DEGs between PAC and TAC, and Pdk4 was one of the downregulated DEGs. From 47 chemical compounds with potential cardiovascular activity and PDK4 protein binding ability, we selected LCZ696 to treat PAC-induced RV remodeling because of its high docking score for binding PDK4. Compared with vehicle-treated PAC mice, LCZ696-treated mice had significantly smaller RV wall thickness and RV diameters, less myocardial fibrosis, lower expression of PDK4 protein, and less phosphorylation of glycogen synthase kinase-3ß (p-GSK3ß). In PAC mice, overexpression of Pdk4 blocked the inhibitory effect of LCZ696 on RV remodeling, whereas conditional knockout of Pdk4 attenuated PAC-induced RV remodeling. CONCLUSIONS: Pdk4 is a common therapeutic target for pressure overload-induced left ventricular and RV remodeling, and LCZ696 attenuates RV remodeling by downregulating Pdk4 and inhibiting PDK4/p-GSK3ß signal.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Masculino , Camundongos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Remodelação Ventricular , Simulação de Acoplamento Molecular , Valsartana/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Combinação de Medicamentos , Modelos Animais de Doenças
13.
Mol Oncol ; 17(3): 499-517, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36349418

RESUMO

Despite the connection of secretory cells to distinct mucus-containing colon cancer histological subtypes and the interaction of secretory cells with immune cells in the pathogenesis of intestinal inflammatory diseases, whether the secretory cell signatures are associated with tumor microenvironment (TME) heterogeneity and can aid in colon cancer patient classification have not been investigated. Here, by performing the principal component analysis and consensus clustering analysis, we identified four distinct expression patterns based on secretory cell signatures which were significantly associated with different clinical behaviors, TME landscape, pathway activation, genomic mutations, and DNA methylation characteristics. Subsequently, a 'SCS score' model was constructed. The high SCS score indicated a pattern of 'secretory cell subtype 2', which was characterized by stromal infiltration and activation, and predicted poor prognosis and low sensitivity to fluorouracil-based chemotherapy and immunotherapy, but high sensitivity to PI3K catalytic subunit inhibitors. In conclusion, our study comprehensively uncovered the tumor heterogeneity related to secretory cell signature expression patterns. Moreover, the SCS score can supplement routine histopathological assessments to guide personalized therapeutic strategies in colon cancer patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/genética , Microambiente Tumoral/genética , Fluoruracila , Análise por Conglomerados
14.
J Adv Res ; 46: 113-121, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35718079

RESUMO

INTRODUCTION: We previously reported a phenomenon called exercise hypertrophic preconditioning (EHP), the underlying mechanisms of which need further clarification. OBJECTIVES: We aimed to investigate whether circular RNAs (circRNAs) are involved in EHP. METHODS: CircRNA sequencing of myocardial tissue was performed in male C57BL/6 mice with EHP and sedentary. Bioinformatics analysis and Sanger sequencing were used to screen hub circRNA expression and to detect full-length circRNAs, respectively. Loss-of-function analyses were conducted to assess the effects of circ-Ddx60 (c-Ddx) on EHP. After 21 days of swimming training or resting, mice underwent transverse aortic constriction (TAC) or sham surgery. Echocardiography, invasive hemodynamic measurement and histological analysis were used to evaluate cardiac remodeling and function. The presence of interaction between c-Ddx and proteins was investigated using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). RESULTS: In this study, we identified a novel circRNA, named c-Ddx that was preferentially expressed in myocardial tissue and significantly up-regulated in EHP mice. Silencing of c-Ddx attenuated the antihypertrophic effect of EHP and worsened heart failure in mice that underwent TAC. ChIRP-MS and molecular docking analysis validated the combination of c-Ddx and eukaryotic elongation factor 2 (eEF2). Mechanistically, c-Ddx silencing inhibited the increase of phosphorylation of eEF2 and its upstream AMP-activated protein kinase (AMPK) induced by EHP. CONCLUSIONS: C-Ddx contributes to the antihypertrophic memory of EHP by binding and activating eEF2, which would provide opportunity to search new therapeutic targets for pathological hypertrophy of heart.


Assuntos
Estenose da Valva Aórtica , RNA Circular , Animais , Masculino , Camundongos , Diclorodifenil Dicloroetileno , Hipertrofia , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , RNA Circular/genética
15.
Biomed Pharmacother ; 156: 113765, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228368

RESUMO

BACKGROUND: Severe heart failure refractory to conventional therapy requires alternative treatment modalities. Surgical ventricular reconstruction (SVR) has been used to reverse cardiac remodeling in post-myocardial infarction (MI) patients with large left ventricular (LV) aneurysm, however, residual LV remodeling and dysfunction remain postoperatively. It is unclear whether SVR recovers response to drug treatment and whether the sodium-glucose co-transporter 2 inhibitor dapagliflozin (DAPA) reverses residual LV remodeling after SVR. METHODS: Adult male C57 mice were subjected to MI or sham surgery. Four-week later, MI mice with LV aneurysm underwent modified SVR or second open-chest sham operation and were randomized to DAPA or vehicle for four-week. Cardiac remodeling, LV function, and the underlying mechanisms were evaluated by echocardiography, invasive LV hemodynamic measurements, mRNA sequencing, and bioinformatics analysis. RESULTS: SVR significantly decreased LV volume; increased myocardial strain, LV pressure change rates and end-systolic elastance; and decreased heart-to-body weight ratio and myocardial fibrosis. However, significant residual cardiac remodeling remained. DAPA significantly attenuated residual cardiac remodeling and improved LV function in SVR mice but did not have curative effects in non-SVR mice. Of the 1532 genes differentially expressed in SVR and MI mice, 1037 were associated with cardiac metabolism; Src, Crebbp, Fn1, Grb2, and Mapk14 were the top 5 hub genes. Unlike sham surgery, MI upregulated those 5 genes, and treatment with SVR + DAPA normalized their expression. CONCLUSIONS: SVR restores therapeutic response in the post-MI heart with large LV aneurysm, and DAPA attenuates residual cardiac remodeling after SVR by normalizing some cardiac metabolism-related hub genes.


Assuntos
Aneurisma , Infarto do Miocárdio , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Masculino , Camundongos , Aneurisma/complicações , Aneurisma/metabolismo , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Remodelação Ventricular
17.
Redox Biol ; 56: 102446, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36057161

RESUMO

AIMS: Metabolic switching during heart development contributes to postnatal cardiomyocyte (CM) cell cycle exit and loss of regenerative capacity in the mammalian heart. Metabolic control has potential for developing effective CM proliferation strategies. We sought to determine whether lactate dehydrogenase A (LDHA) regulated CM proliferation by inducing metabolic reprogramming. METHODS AND RESULTS: LDHA expression was high in P1 hearts and significantly decreased during postnatal heart development. CM-specific LDHA knockout mice were generated using CRISPR/Cas9 technology. CM-specific LDHA knockout inhibited CM proliferation, leading to worse cardiac function and a lower survival rate in the neonatal apical resection model. In contrast, CM-specific overexpression of LDHA promoted CM proliferation and cardiac repair post-MI. The α-MHC-H2B-mCh/CAG-eGFP-anillin system was used to confirm the proliferative effect triggered by LDHA on P7 CMs and adult hearts. Metabolomics, proteomics and Co-IP experiments indicated that LDHA-mediated succinyl coenzyme A reduction inhibited succinylation-dependent ubiquitination of thioredoxin reductase 1 (Txnrd1), which alleviated ROS and thereby promoted CM proliferation. In addition, flow cytometry and western blotting showed that LDHA-driven lactate production created a beneficial cardiac regenerative microenvironment by inducing M2 macrophage polarization. CONCLUSIONS: LDHA-mediated metabolic reprogramming promoted CM proliferation by alleviating ROS and inducing M2 macrophage polarization, indicating that LDHA might be an effective target for promoting cardiac repair post-MI.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Proliferação de Células , Coenzima A/farmacologia , Lactato Desidrogenase 5 , Lactatos/metabolismo , Lactatos/farmacologia , Macrófagos/metabolismo , Mamíferos , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/metabolismo
18.
Chemosphere ; 308(Pt 1): 136158, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36029857

RESUMO

Milk vetch (MV, Astragalus sinicus L.) is used in agricultural production as a green manure; however, its impact on accumulation levels of heavy metals (e.g., Cd) in rice remains poorly understood. This study investigated the effects of MV on Cd accumulation in rice, iron plaque formation, soil properties, and the soil microbial community structure through field experiments. The results showed that MV reduced Cd concentration in the roots, stem, leaves, and grains by 33%, 60%, 71%, and 49%, respectively. Chemical fertilizer and MV treatment promoted iron plaque formation, and MV considerably increased the Fe/Mn ratio in the iron plaque. More importantly, MV inhibited Cd transportation from the root iron plaque to the root by 74%. The concentrations of CaCl2-extractable Cd, available phosphorus, and available potassium, as well as the cation exchange capacity and urease activity, were significantly reduced in the MV treatment. Furthermore, 16 S rDNA high-throughput sequencing results of the soil microbial community structure showed that compared with the control, MV increased the soil microbial richness, increased the relative abundance of anaerobic microorganisms, and significantly increased the relative abundance of Thermodesulfovibrio and Geobacter at the genus level. The increase in anaerobic microbial abundance was closely related to the decrease in CaCl2-extractable Cd concentration. The application of MV promoted the formation of iron plaque, inhibited the transport of Cd, increased the abundance of anaerobic microorganisms, decreased the CaCl2-extractable Cd concentration, and reduced the Cd concentration in rice grain.


Assuntos
Astrágalo , Oryza , Poluentes do Solo , Bactérias/genética , Cádmio/análise , Cloreto de Cálcio , DNA Ribossômico , Grão Comestível/química , Fertilizantes/análise , Ferro/química , Esterco/análise , Fósforo/análise , Potássio/análise , Solo/química , Poluentes do Solo/análise , Urease/análise
19.
Front Genet ; 13: 913886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770000

RESUMO

Many studies in recent years have demonstrated that some messenger RNA (mRNA) in platelets can be used as biomarkers for the diagnosis of pan-cancer. The quantitative real-time polymerase chain reaction (RT-qPCR) molecular technique is most commonly used to determine mRNA expression changes in platelets. Accurate and reliable relative RT-qPCR is highly dependent on reliable reference genes. However, there is no study to validate the reference gene in platelets for pan-cancer. Given that the expression of some commonly used reference genes is altered in certain conditions, selecting and verifying the most suitable reference gene for pan-cancer in platelets is necessary to diagnose early stage cancer. This study performed bioinformatics and functional analysis from the RNA-seq of platelets data set (GSE68086). We generated 95 candidate reference genes after the primary bioinformatics step. Seven reference genes (YWHAZ, GNAS, GAPDH, OAZ1, PTMA, B2M, and ACTB) were screened out among the 95 candidate reference genes from the data set of the platelets' transcriptome of pan-cancer and 73 commonly known reference genes. These candidate reference genes were verified by another platelets expression data set (GSE89843). Then, we used RT-qPCR to confirm the expression levels of these seven genes in pan-cancer patients and healthy individuals. These RT-qPCR results were analyzed using the internal stability analysis software programs (the comparative Delta CT method, geNorm, NormFinder, and BestKeeper) to rank the candidate genes in the order of decreasing stability. By contrast, the GAPDH gene was stably and constitutively expressed at high levels in all the tested samples. Therefore, GAPDH was recommended as the most suitable reference gene for platelet transcript analysis. In conclusion, our result may play an essential part in establishing a molecular diagnostic platform based on the platelets to diagnose pan-cancer.

20.
Comput Struct Biotechnol J ; 20: 2153-2168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615026

RESUMO

Current clinical factors for screening candidates that might benefit from adjuvant chemotherapy in colon cancer are inadequate. Tumor microenvironment, especially the stromal components, has the potential to determine treatment response. However, clinical translation of the tumor-associated stromal characterization into a practical biomarker for helping treatment decision has not been established. Using machine learning, we established a novel 31-gene signature, called stromal cell infiltration intensity score (SIIS), to distinguish patients characterized by the enrichment of abundant stromal cells in five colon cancer datasets from GEO (N = 990). Patients with high-SIIS were at higher risk for recurrence and mortality, and could not benefit from adjuvant chemotherapy due to their intrinsic drug resistance; however, the opposite was reported for patients with low-SIIS. The role of SIIS in detection of patients with high stromal cell infiltration and reduced drug efficiency was consistently validated in the TCGA-COAD cohort (N = 382), Sun Yat-sen University Cancer Center cohort (N = 30), and could also be observed in TCGA pan-cancer settings (N = 4898) and four independent immunotherapy cohorts (N = 467). Based on multi-omics data analysis and the CRISPR library screen, we reported that lack of gene mutation, hypomethylation in ADCY4 promoter region, activation of WNT-PCP pathway and SIAH2-GPX3 axis were potential mechanisms responsible for the chemoresistance of patients within high-SIIS group. Our findings demonstrated that SIIS provide an important reference for those making treatment decisions for such special patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA