Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(6): e0064323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272841

RESUMO

Cutaneous human papillomavirus type 5 (HPV5) belongs to the supposedly oncogenic ß-HPVs associated with specific types of skin and oral cavity cancers. Three viral proteins, namely, helicase E1 and transcription factors E2 and E8^E2, are master regulators of the viral life cycle. HPV5 E2 is a transcriptional activator that also participates in the E1-dependent replication and nuclear retention of the viral genome, whereas E8^E2 counterbalances the activity of E2 and inhibits HPV transcription and replication. In the present study, we demonstrate that the HPV5 E2 protein is extensively phosphorylated by cellular protein kinases, and serine residue 402 (S402) is the highest scoring phosphoacceptor site. This residue is located within a motif conserved among many ß-HPVs and in the oncogenic HPV31 α-type. Using the nonphosphorylatable and phosphomimetic mutants, we demonstrate that phosphorylation of the E2 S402 residue is required for the transcription and replication of the HPV5 genome in U2OS cells and human primary keratinocytes. Mechanistically, the E2-S402-phopshodeficient protein is unable to trigger viral gene transcription and has an impaired ability to support E1-dependent replication, but the respective E8^E2-S213 mutant displays no phenotype. However, phosphorylation of the E2 S402 residue has no impact on the E2 stability, subcellular localization, self-assembly, DNA-binding capacity, and affinity to the E1 and BRD4 proteins. Further studies are needed to identify the protein kinase(s) responsible for this phosphorylation. IMPORTANCE Human papillomavirus type 5 (HPV5) may play a role in the development of specific types of cutaneous and head and neck cancers. The persistence of the HPV genome in host cells depends on the activity of its proteins, namely, a helicase E1 and transcription/replication factor E2. The latter also facilitates the attachment of episomal viral genomes to host cell chromosomes. In the present study, we show that the HPV5 E2 protein is extensively phosphorylated by host cell protein kinases, and we identify serine residue 402 as the highest scoring phosphoacceptor site of E2. We demonstrate that the replication of the HPV5 genome may be blocked by a single point mutation that prevents phosphorylation of this serine residue and switches off the transcriptional activity of the E2 protein. The present study contributes to a better understanding of ß-HPV5 replication and its regulation by host cell protein kinases.


Assuntos
Papillomavirus Humano , Proteínas Oncogênicas Virais , Fatores de Transcrição , Replicação Viral , Humanos , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral/genética , Papillomavirus Humano/genética , Papillomavirus Humano/fisiologia
2.
Front Microbiol ; 12: 738125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733254

RESUMO

The life-cycle of human papillomaviruses (HPVs) includes three distinct phases of the viral genome replication. First, the viral genome is amplified in the infected cells, and this amplification is often accompanied by the oligomerization of the viral genomes. Second stage includes the replication of viral genomes in concert with the host cell genome. The viral genome is further amplified during the third stage of the viral-life cycle, which takes place only in the differentiated keratinocytes. We have previously shown that the HPV18 genomes utilize at least two distinct replication mechanisms during the initial amplification. One of these mechanisms is a well-described bidirectional replication via theta type of replication intermediates. The nature of another replication mechanism utilized by HPV18 involves most likely recombination-dependent replication. In this paper, we show that the usage of different replication mechanisms is a property shared also by other HPV types, namely HPV11 and HPV5. We further show that the emergence of the recombination dependent replication coincides with the oligomerization of the viral genomes and is dependent on the replicative DNA polymerases. We also show that the oligomeric genomes of HPV18 replicate almost exclusively using recombination dependent mechanism, whereas monomeric HPV31 genomes replicate bi-directionally during the maintenance phase of the viral life-cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA