RESUMO
Single-cell analysis has become the approach of choice for unraveling the complexity of biological processes that require assessing the variability of individual cellular responses to treatment or infection with single-cell resolution. Many techniques for single-cell molecular profiling have been developed over the past 10 years, and several dedicated technologies have been commercialized. The 10X Genomics droplet-based single-cell profiling is a widespread technology that offers ready-to-use reagents for transcriptomic and multi-omic single-cell profiling. The technology includes workflows for single-cell and single-nuclei RNA sequencing (scRNA-Seq and snRNA-Seq, respectively), scATAC-Seq, single-cell immune profiling (BCR/TCR sequencing), and multiome. The latter combines transcriptional (scRNA-Seq) and epigenetic information (scATAC-Seq) coming from the same cell. The quality (viability, integrity, purity) of single-cell or single-nuclei suspensions isolated from tissues and analyzed by any of these approaches is critical for generating high-quality data. Therefore, the sample preparation protocols should be adapted to the particularities of each biological tissue and ensure the generation of high-quality cell and nuclei suspensions. This article describes two protocols for preparing brain and bone marrow samples for the downstream multiome 10X Genomics pipeline. The protocols are performed stepwise and cover tissue dissociation, cell sorting, nuclei isolation, and quality control of prepared nuclei suspension that is used as starting material for cell partitioning and barcoding, library preparation, and sequencing. These standardized protocols produce high-quality nuclei libraries and robust and reliable data.
Assuntos
Medula Óssea , Encéfalo , Núcleo Celular , RNA Nuclear Pequeno , BioensaioRESUMO
PURPOSE: CD70 is a costimulatory molecule known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). Clear-cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors; however, the clinical consequences of CD70 expression remain unclear. EXPERIMENTAL DESIGN: Tumor tissue from 25 patients with ccRCC was assessed for the expression of CD27 and CD70 in situ using multiplex immunofluorescence. CD27+ T-cell phenotypes in tumors were analyzed by flow cytometry and their gene expression profile were analyzed by single-cell RNA sequencing then confirmed with public data. Baseline sCD27 was measured in 81 patients with renal cell carcinoma (RCC) treated with immunotherapy (35 for training cohort and 46 for validation cohort). RESULTS: In the tumor microenvironment, CD27+ T cells interacted with CD70-expressing tumor cells. Compared with CD27- T cells, CD27+ T cells exhibited an apoptotic and dysfunctional signature. In patients with RCC, the intratumoral CD27-CD70 interaction was significantly correlated with the plasma sCD27 concentration. High sCD27 levels predicted poor overall survival in patients with RCC treated with anti-programmed cell death protein 1 in both the training and validation cohorts but not in patients treated with antiangiogenic therapy. CONCLUSIONS: In conclusion, we demonstrated that sCD27, a surrogate marker of T-cell dysfunction, is a predictive biomarker of resistance to immunotherapy in RCC. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be extended to other tumors.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Ligante CD27/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Microambiente TumoralRESUMO
HIV elite controllers maintain a population of CD4 + T cells endowed with high avidity for Gag antigens and potent effector functions. How these HIV-specific cells avoid infection and depletion upon encounter with the virus remains incompletely understood. Ex vivo characterization of single Gag-specific CD4 + T cells reveals an advanced Th1 differentiation pattern in controllers, except for the CCR5 marker, which is downregulated compared to specific cells of treated patients. Accordingly, controller specific CD4 + T cells show decreased susceptibility to CCR5-dependent HIV entry. Two controllers carried biallelic mutations impairing CCR5 surface expression, indicating that in rare cases CCR5 downregulation can have a direct genetic cause. Increased expression of ß-chemokine ligands upon high-avidity antigen/TCR interactions contributes to autocrine CCR5 downregulation in controllers without CCR5 mutations. These findings suggest that genetic and functional regulation of the primary HIV coreceptor CCR5 play a key role in promoting natural HIV control.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Controladores de Elite , Infecções por HIV/imunologia , HIV-1/imunologia , Receptores CCR5/metabolismo , Internalização do Vírus , Quimiocinas , Regulação para Baixo , Regulação da Expressão Gênica , Produtos do Gene gag/metabolismo , Infecções por HIV/virologia , Antígenos de Histocompatibilidade Classe II , Humanos , Mutação , Receptores CCR5/genética , Receptores CXCR3RESUMO
The quantification and characterization of circulating immune cells provide key indicators of human health and disease. To identify the relative effects of environmental and genetic factors on variation in the parameters of innate and adaptive immune cells in homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European ancestry. We found that smoking, together with age, sex and latent infection with cytomegalovirus, were the main non-genetic factors that affected variation in parameters of human immune cells. Genome-wide association studies of 166 immunophenotypes identified 15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated that the parameters of innate cells were more strongly controlled by genetic variation than were those of adaptive cells, which were driven by mainly environmental exposure. Our data establish a resource that will generate new hypotheses in immunology and highlight the role of innate immunity in susceptibility to common autoimmune diseases.
Assuntos
Variação Genética/imunologia , Imunidade Inata/genética , Imunidade Adaptativa/genética , Adulto , Idoso , Feminino , Estudo de Associação Genômica Ampla , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Persistent viral infections and inflammatory syndromes induce the accumulation of T cells with characteristics of terminal differentiation or senescence. However, the mechanism that regulates the end-stage differentiation of these cells is unclear. Human CD4(+) effector memory (EM) T cells (CD27(-)CD45RA(-)) and also EM T cells that re-express CD45RA (CD27(-)CD45RA(+); EMRA) have many characteristics of end-stage differentiation. These include the expression of surface KLRG1 and CD57, reduced replicative capacity, decreased survival, and high expression of nuclear γH2AX after TCR activation. A paradoxical observation was that although CD4(+) EMRA T cells exhibit defective telomerase activity after activation, they have significantly longer telomeres than central memory (CM)-like (CD27(+)CD45RA(-)) and EM (CD27(-)CD45RA(-)) CD4(+) T cells. This suggested that telomerase activity was actively inhibited in this population. Because proinflammatory cytokines such as TNF-α inhibited telomerase activity in T cells via a p38 MAPK pathway, we investigated the involvement of p38 signaling in CD4(+) EMRA T cells. We found that the expression of both total and phosphorylated p38 was highest in the EM and EMRA compared with that of other CD4(+) T cell subsets. Furthermore, the inhibition of p38 signaling, especially in CD4(+) EMRA T cells, significantly enhanced their telomerase activity and survival after TCR activation. Thus, activation of the p38 MAPK pathway is directly involved in certain senescence characteristics of highly differentiated CD4(+) T cells. In particular, CD4(+) EMRA T cells have features of telomere-independent senescence that are regulated by active cell signaling pathways that are reversible.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Senescência Celular/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Telomerase/imunologia , Adulto , Western Blotting , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Separação Celular , Citometria de Fluxo , Humanos , Memória Imunológica/imunologia , Hibridização in Situ Fluorescente , Antígenos Comuns de Leucócito/biossíntese , Antígenos Comuns de Leucócito/imunologia , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/citologia , Telomerase/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
We here describe novel aspects of CD8(+) and CD4(+) T cell subset interactions that may be clinically relevant and provide new tools for regulating the reconstitution of the peripheral CD8(+) T cell pools in immune-deficient states. We show that the reconstitution capacity of transferred isolated naïve CD8(+) T cells and their differentiation of effector functions is limited, but both dramatically increase upon the co-transfer of CD4(+) T cells. This helper effect is complex and determined by multiple factors. It was directly correlated to the number of helper cells, required the continuous presence of the CD4(+) T cells, dependent on host antigen-presenting cells (APCs) expressing CD40 and on the formation of CD4/CD8/APC cell clusters. By comparing the recovery of (CD44(+)CD62L(high)) T(CM) and (CD44(+)CD62L(low)) T(EM) CD8(+) T cells, we found that the accumulation of T(CM) and T(EM) subsets is differentially regulated. T(CM)-cell accumulation depended mainly on type I interferons, interleukin (IL)-6, and IL-15, but was independent of CD4(+) T-cell help. In contrast, T(EM)-cell expansion was mainly determined by CD4(+) T-cell help and dependent on the expression of IL-2Rß by CD8 cells, on IL-2 produced by CD4(+) T-cells, on IL-15 and to a minor extent on IL-6.
Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/imunologia , Transdução de Sinais/imunologia , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Diferenciação Celular/imunologia , Proliferação de Células , Citocinas/metabolismo , Camundongos , Receptores CCR5/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Fatores de TempoRESUMO
The relative roles that ageing and lifelong cytomegalovirus (CMV) infection have in shaping naive and memory CD4+ T-cell repertoires in healthy older people is unclear. Using multiple linear regression analysis we found that age itself is a stronger predictor than CMV seropositivity for the decrease in CD45RA+ CD27+ CD4+ T cells over time. In contrast, the increase in CD45RAâ» CD27â» and CD45RA+ CD27â» CD4+ T cells is almost exclusively the result of CMV seropositivity, with age alone having no significant effect. Furthermore, the majority of the CD45RAâ» CD27â» and CD45RA+ CD27â» CD4+ T cells in CMV-seropositive donors are specific for this virus. CD45RA+ CD27â» CD4+ T cells have significantly reduced CD28, interleukin-7 receptor α (IL-7Rα) and Bcl-2 expression, Akt (ser473) phosphorylation and reduced ability to survive after T-cell receptor activation compared with the other T-cell subsets in the same donors. Despite this, the CD45RA+ CD27â» subset is as multifunctional as the CD45RAâ» D27+ and CD45RAâ» CD27â» CD4+ T-cell subsets, indicating that they are not an exhausted population. In addition, CD45RA+ CD27â» CD4+ T cells have cytotoxic potential as they express high levels of granzyme B and perforin. CD4+ memory T cells re-expressing CD45RA can be generated from the CD45RAâ» CD27+ population by the addition of IL-7 and during this process these cells down-regulated expression of IL-7R and Bcl-2 and so resemble their counterparts in vivo. Finally we showed that the proportion of CD45RA+ CD27â» CD4+ T cells of multiple specificities was significantly higher in the bone marrow than the blood of the same individuals, suggesting that this may be a site where these cells are generated.
Assuntos
Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Interleucina-7/fisiologia , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Diferenciação Celular/imunologia , Separação Celular , Sobrevivência Celular , Infecções por Citomegalovirus/patologia , Citometria de Fluxo , Humanos , Antígenos Comuns de Leucócito/biossíntese , Pessoa de Meia-Idade , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/patologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese , Adulto JovemRESUMO
Highly differentiated CD8+CD28-CD27- T cells have short telomeres, defective telomerase activity, and reduced capacity for proliferation, indicating that they are close to replicative senescence. In addition, these cells express increased levels of the senescence-associated inhibitory receptor KLRG1 and have poor capacity for IL-2 synthesis and defective Akt (ser(473)) phosphorylation after activation. It is not known whether signaling via KLRG1 contributes to any of the attenuated differentiation-related functional changes in CD8+ T cells. To address this, we blocked KLRG1 signaling during T-cell receptor activation using antibodies against its major ligand, E-cadherin. This resulted in a significant enhancement of Akt (ser(473)) phosphorylation and T-cell receptor-induced proliferative activity of CD8+CD28-CD27- T cells. Furthermore, the increase of proliferation was directly linked to the Akt-mediated induction of cyclin D and E and reduction in the cyclin inhibitor p27 expression. In contrast, the reduced telomerase activity in highly differentiated CD8+CD28(-)CD27- T cells was not altered by KLRG1 blockade, indicating the involvement of other mechanisms. This is the first demonstration of a functional role for KLRG1 in primary human CD8+ T cells and highlights that certain functional defects that arise during progressive T-cell differentiation toward replicative senescence are maintained actively by inhibitory receptor signaling.
Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Lectinas Tipo C/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transativadores/fisiologia , Adulto , Idoso , Antígenos CD28/análise , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/enzimologia , Caderinas/antagonistas & inibidores , Diferenciação Celular , Senescência Celular , Ciclina D2 , Ciclina E/biossíntese , Ciclina E/genética , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/genética , Ciclinas/biossíntese , Ciclinas/genética , Feminino , Humanos , Lectinas Tipo C/antagonistas & inibidores , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Fosfosserina/análise , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptores Imunológicos , Telômero/ultraestrutura , Transativadores/antagonistas & inibidores , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/análise , Adulto JovemRESUMO
Jakmip1 belongs to a family of three related genes encoding proteins rich in coiled-coils. Jakmip1 is expressed predominantly in neuronal and lymphoid cells and colocalizes with microtubules. We have studied the expression of Jakmip1 mRNA and protein in distinct subsets of human primary lymphocytes. Jakmip1 is absent in naive CD8(+) and CD4(+) T lymphocytes from peripheral blood but is highly expressed in Ag-experienced T cells. In cord blood T lymphocytes, induction of Jakmip1 occurs upon TCR/CD28 stimulation and parallels induction of effector proteins, such as granzyme B and perforin. Further analysis of CD8(+) and CD4(+) T cell subsets showed a higher expression of Jakmip1 in the effector CCR7(-) and CD27(-) T cell subpopulations. In a gene expression follow-up of the development of CMV-specific CD8(+) response, Jakmip1 emerged as one of the most highly up-regulated genes from primary infection to latent stage. To investigate the relationship between Jakmip1 and effector function, we monitored cytotoxicity of primary CD8(+) T cells silenced for Jakmip1 or transduced with the full-length protein or the N-terminal region. Our findings point to Jakmip1 being a novel effector memory gene restraining T cell-mediated cytotoxicity.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/imunologia , Citotoxicidade Imunológica , Inibidores do Crescimento/fisiologia , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Morte Celular/genética , Morte Celular/imunologia , Diferenciação Celular/genética , Linhagem Celular , Citomegalovirus/imunologia , Citotoxicidade Imunológica/genética , Inibidores do Crescimento/biossíntese , Inibidores do Crescimento/deficiência , Inibidores do Crescimento/genética , Humanos , Memória Imunológica/genética , Antígenos Comuns de Leucócito/biossíntese , Proteínas de Ligação a RNA/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/virologiaRESUMO
In the last decade, the efforts in clarifying the interaction between zinc finger proteins and DNA targets strongly stimulated the creativity of scientists in the field of protein engineering. In particular, the versatility and the modularity of zinc finger (ZF) motives make these domains optimal building blocks for generating artificial zinc finger peptides (ZFPs). ZFPs can act as transcription modulators potentially able to control the expression of any desired gene, when fused to an appropriate effector domain. Artificial ZFPs open the possibility to re-program the expression of specific genes at will and can represent a powerful tool in basic science, biotechnology and gene therapy. In this review we will focus on old, novel and possible future applications of artificial ZFPs.
Assuntos
Técnicas Genéticas , Terapia Genética/métodos , Peptídeos/química , Engenharia de Proteínas , Dedos de Zinco , Animais , Cromatina/química , DNA/química , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transcrição GênicaRESUMO
Che-1 is a recently identified human Rb binding protein that inhibits the Rb growth-suppressing function and regulates cell proliferation. Che-1 contacts the Rb and competes with HDAC1 for Rb-binding site, removing HDAC1 from the Rb/E2F cell cycle-regulated promoters. We have investigated the expression of Che-1 in neuronal cells and we showed that Che-1 directly interacts with Tau. Tau is a microtubule-associated protein involved in the assembly and stabilization of neuronal microtubules network that plays a crucial role modulating neuronal morphogenesis, axonal shape, and transport. In rat cerebellar granule neurons (CGNs) Che-1 partially colocalizes with Tau in the cytoplasm. Che-1 binds the amino-terminal region of Tau protein, which is not involved in microtubule interactions. Tau and Che-1 endogenous proteins coimmunoprecipitate from CGNs cellular lysates. In addition, Che-1/Tau interaction was demonstrated both in overexpressing COS-7 cells and CGNs by FRET analysis. Finally, we observed that Tau/Che-1 interaction is modulated during neuronal apoptosis.
Assuntos
Apoptose/fisiologia , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteínas tau/metabolismo , Animais , Cerebelo/enzimologia , Cerebelo/metabolismo , Quinase 1 do Ponto de Checagem , Chlorocebus aethiops , Cães , Humanos , Mutação , Neurônios/enzimologia , Ligação Proteica/fisiologia , Ratos , Ratos WistarRESUMO
DNA tumor virus oncoproteins bind and inactivate Rb by interfering with the Rb/HDAC1 interaction. Che-1 is a recently identified human Rb binding protein that inhibits the Rb growth suppressing function. Here we show that Che-1 contacts the Rb pocket region and competes with HDAC1 for Rb binding site, removing HDAC1 from the Rb/E2F complex in vitro and from the E2F target promoters in vivo. Che-1 overexpression activates DNA synthesis in quiescent NIH-3T3 cells through HDAC1 displacement. Consistently, Che-1-specific RNA interference affects E2F activity and cell proliferation in human fibroblasts but not in the pocket protein-defective 293 cells. These findings indicate the existence of a pathway of Rb regulation supporting Che-1 as the cellular counterpart of DNA tumor virus oncoproteins.