Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34945849

RESUMO

The study aims to create a preoperative model from baseline demographic and health-related quality of life scores (HRQOL) to predict a good to excellent early clinical outcome using a machine learning (ML) approach. A single spine surgery center retrospective review of prospectively collected data from January 2016 to December 2020 from the institutional registry (SpineREG) was performed. The inclusion criteria were age ≥ 18 years, both sexes, lumbar arthrodesis procedure, a complete follow up assessment (Oswestry Disability Index-ODI, SF-36 and COMI back) and the capability to read and understand the Italian language. A delta of improvement of the ODI higher than 12.7/100 was considered a "good early outcome". A combined target model of ODI (Δ ≥ 12.7/100), SF-36 PCS (Δ ≥ 6/100) and COMI back (Δ ≥ 2.2/10) was considered an "excellent early outcome". The performance of the ML models was evaluated in terms of sensitivity, i.e., True Positive Rate (TPR), specificity, i.e., True Negative Rate (TNR), accuracy and area under the receiver operating characteristic curve (AUC ROC). A total of 1243 patients were included in this study. The model for predicting ODI at 6 months' follow up showed a good balance between sensitivity (74.3%) and specificity (79.4%), while providing a good accuracy (75.8%) with ROC AUC = 0.842. The combined target model showed a sensitivity of 74.2% and specificity of 71.8%, with an accuracy of 72.8%, and an ROC AUC = 0.808. The results of our study suggest that a machine learning approach showed high performance in predicting early good to excellent clinical results.

2.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946412

RESUMO

Despite the huge body of research on osteogenic differentiation and bone tissue engineering, the translation potential of in vitro results still does not match the effort employed. One reason might be that the protocols used for in vitro research have inherent pitfalls. The synthetic glucocorticoid dexamethasone is commonly used in protocols for trilineage differentiation of human bone marrow mesenchymal stromal cells (hBMSCs). However, in the case of osteogenic commitment, dexamethasone has the main pitfall of inhibiting terminal osteoblast differentiation, and its pro-adipogenic effect is well known. In this work, we aimed to clarify the role of dexamethasone in the osteogenesis of hBMSCs, with a particular focus on off-target differentiation. The results showed that dexamethasone does induce osteogenic differentiation by inhibiting SOX9 expression, but not directly through RUNX2 upregulation as it is commonly thought. Rather, PPARG is concomitantly and strongly upregulated, leading to the formation of adipocyte-like cells within osteogenic cultures. Limiting the exposure to dexamethasone to the first week of differentiation did not affect the mineralization potential. Gene expression levels of RUNX2, SOX9, and PPARG were simulated using approximate Bayesian computation based on a simplified theoretical model, which was able to reproduce the observed experimental trends but with a different range of responses, indicating that other factors should be integrated to fully understand how dexamethasone influences cell fate. In summary, this work provides evidence that current in vitro differentiation protocols based on dexamethasone do not represent a good model, and further research is warranted in this field.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , PPAR gama/metabolismo , Fatores de Transcrição SOX9/metabolismo , Adulto , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , PPAR gama/genética , Fatores de Transcrição SOX9/genética
3.
Molecules ; 20(5): 8316-40, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26007168

RESUMO

Toll-Like Receptors (TLR) are a large family of proteins involved in the immune system response. Both the activation and the inhibition of these receptors can have positive effects on several diseases, including viral pathologies and cancer, therefore prompting the development of new compounds. In order to provide new indications for the design of Toll-Like Receptor 7 (TLR7)-targeting drugs, the mechanism of interaction between the TLR7 and two important classes of agonists (imidazoquinoline and adenine derivatives) was investigated through docking and Molecular Dynamics simulations. To perform the computational analysis, a new model for the dimeric form of the receptors was necessary and therefore created. Qualitative and quantitative differences between agonists and inactive compounds were determined. The in silico results were compared with previous experimental observations and employed to define the ligand binding mechanism of TLR7.


Assuntos
Adenina/química , Biologia Computacional/métodos , Quinolinas/química , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo , Imunidade Adaptativa/imunologia , Adenina/análogos & derivados , Humanos , Imunidade Inata/imunologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Receptor 8 Toll-Like/química
4.
Eur J Immunol ; 43(8): 2126-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23619996

RESUMO

The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a cytoplasmic protein complex that mediates inflammatory responses to a broad array of danger signals. The inflammasome drives caspase-1 activation and promotes secretion of the pro-inflammatory cytokines IL-1ß and IL-18, and might also participate in other cellular processes. Here, we tried to identify new pathways regulated by the NLRP3 inflammasome in murine dendritic cells (DCs) in response to monosodium urate (MSU) crystals. Using a transcriptomic approach, we found that DCs from Nlrp3(-/-) mice responded to MSU with differential expression of genes involved in the DNA damage response and apoptosis. Upon exposure to MSU or other ROS-mobilizing stimuli (rotenone and γ-radiation), DNA fragmentation was markedly ameliorated in Nlrp3(-/-) and casp-1(-/-) DCs compared with WT DCs. Moreover, Nlrp3(-/-) DCs experienced significantly less oxidative DNA damage mediated by ROS. A significant decrease of the expression of several genes involved in double-strand and base-excision DNA repair was observed in WT DCs. Basal DNA repair capacity in WT DCs resulted in activation and stabilization of p53 in vitro and in vivo, which resulted in increased cell death compared with that in Nlrp3(-/-) DCs. These data provide the first evidence for the involvement of the NLRP3 inflammasome in DNA damage responses induced by cellular stress.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Células Dendríticas/metabolismo , Inflamassomos/imunologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Transporte/genética , Caspase 1/genética , Sobrevivência Celular , Células Cultivadas , Reparo do DNA/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Ativação Enzimática , Inflamação/induzido quimicamente , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Peritonite/induzido quimicamente , Peritonite/imunologia , Espécies Reativas de Oxigênio , Rotenona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Proteína Supressora de Tumor p53/metabolismo , Desacopladores/farmacologia , Ácido Úrico/farmacologia
5.
Immunol Res ; 53(1-3): 78-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22427013

RESUMO

The Nucleotide-binding oligomerization domain, Leucine-rich Repeat and Pyrin domain containing (NLRP) family and corresponding inflammasomes are important intracellular sensors of microbial pathogens and stress signals that promote caspase-1-mediated release of IL-1ß and IL-18. Studies using targeted disruption of NLRP1 and NLRP3 have revealed key roles for these inflammasomes in innate immunity and inflammation, as well as in autoimmune diseases, metabolic disorders, and cancers. The newly identified family members NLRP6, NLRP10, and NLRP12 are emerging as important molecules regulating gut homeostasis in mouse models, as well as being correlated to human diseases. Here, we review our current knowledge of NLRP1 and NLRP3 biology, from molecular structure, function, and proposed models of activation to associations with several human disorders. New insights into novel NLRPs that act as regulators of intestinal immunity are also discussed.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Transporte/imunologia , Inflamação/imunologia , Enteropatias/imunologia , Complexos Multiproteicos/imunologia , Animais , Caspase 1/metabolismo , Modelos Animais de Doenças , Homeostase , Humanos , Imunidade nas Mucosas , Inflamassomos/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA