Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(5): 904-919.e11, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38547863

RESUMO

Programmed death-ligand 1 (PD-L1) drives inhibition of antigen-specific T cell responses through engagement of its receptor programmed death-1 (PD-1) on activated T cells. Overexpression of these immune checkpoint proteins in the tumor microenvironment has motivated the design of targeted antibodies that disrupt this interaction. Despite clinical success of these antibodies, response rates remain low, necessitating novel approaches to enhance performance. Here, we report the development of antibody fusion proteins that block immune checkpoint pathways through a distinct mechanism targeting molecular trafficking. By engaging multiple receptor epitopes on PD-L1, our engineered multiparatopic antibodies induce rapid clustering, internalization, and degradation in an epitope- and topology-dependent manner. The complementary mechanisms of ligand blockade and receptor downregulation led to more durable immune cell activation and dramatically reduced PD-L1 availability in mouse tumors. Collectively, these multiparatopic antibodies offer mechanistic insight into immune checkpoint protein trafficking and how it may be manipulated to reprogram immune outcomes.


Assuntos
Antígeno B7-H1 , Regulação para Baixo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/antagonistas & inibidores , Animais , Camundongos , Humanos , Regulação para Baixo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
2.
Cell Rep ; 43(1): 113603, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38117650

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with important roles in many cellular processes as well as in cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. How these dimers relate to higher-order EGFR oligomers seen in cell membranes, however, remains unclear. Here, we used single-particle tracking (SPT) and Förster resonance energy transfer imaging to examine how each domain of EGFR contributes to receptor oligomerization and the rate of receptor diffusion in the cell membrane. Although the extracellular region of EGFR is sufficient to drive receptor dimerization, we find that the EGF-induced EGFR slowdown seen by SPT requires higher-order oligomerization-mediated in part by the intracellular tyrosine kinase domain when it adopts an active conformation. Our data thus provide important insight into the interactions required for higher-order EGFR assemblies involved in EGF signaling.


Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Membrana Celular/metabolismo , Fosforilação , Transdução de Sinais
3.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090557

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) with important roles in many cellular processes as well as cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. However, it is not clear how these dimers relate to higher-order EGFR oligomers detected at the cell surface. We used single-particle tracking (SPT) and Förster resonance energy transfer (FRET) imaging to examine how each domain within EGFR contributes to receptor dimerization and the rate of its diffusion in the cell membrane. We show that the EGFR extracellular region is sufficient to drive receptor dimerization, but that the EGF-induced EGFR slow-down seen by SPT requires formation of higher order oligomers, mediated in part by the intracellular tyrosine kinase domain - but only when in its active conformation. Our data thus provide important insight into higher-order EGFR interactions required for EGF signaling.

4.
Cell Mol Life Sci ; 79(7): 389, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773608

RESUMO

EWI2 is a transmembrane immunoglobulin superfamily (IgSF) protein that physically associates with tetraspanins and integrins. It inhibits cancer cells by influencing the interactions among membrane molecules including the tetraspanins and integrins. The present study revealed that, upon EWI2 silencing or ablation, the elevated movement and proliferation of cancer cells in vitro and increased cancer metastatic potential and malignancy in vivo are associated with (i) increases in clustering, endocytosis, and then activation of EGFR and (ii) enhancement of Erk MAP kinase signaling. These changes in signaling make cancer cells (i) undergo partial epithelial-to-mesenchymal (EMT) for more tumor progression and (ii) proliferate faster for better tumor formation. Inhibition of EGFR or Erk kinase can abrogate the cancer cell phenotypes resulting from EWI2 removal. Thus, to inhibit cancer cells, EWI2 prevents EGFR from clustering and endocytosis to restrain its activation and signaling.


Assuntos
Antígenos CD , Endocitose , Receptores ErbB , Proteínas de Membrana , Neoplasias , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Integrinas/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
5.
Cell ; 184(24): 5950-5969.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34741801

RESUMO

The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.


Assuntos
Autofagossomos/virologia , COVID-19/virologia , Autofagia , COVID-19/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Endossomos/fisiologia , Endossomos/virologia , Complexo de Golgi/fisiologia , Células HEK293 , Células HeLa , Humanos , Fusão de Membrana , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/virologia , Proteínas Qa-SNARE/biossíntese , Receptores sigma/biossíntese , SARS-CoV-2 , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sinaptotagminas/biossíntese , Receptor Sigma-1
6.
Elife ; 102021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821550

RESUMO

Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation - arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.


Assuntos
Carcinogênese/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutação , Receptores Proteína Tirosina Quinases/metabolismo
7.
J Clin Invest ; 130(9): 4637-4651, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484803

RESUMO

γ9δ2T cells play a major role in cancer immune surveillance, yet the clinical translation of their in vitro promise remains challenging. To address limitations of previous clinical attempts using expanded γ9δ2T cells, we explored the clonal diversity of γ9δ2T cell repertoires and characterized their target. We demonstrated that only a fraction of expanded γ9δ2T cells was active against cancer cells and that activity of the parental clone, or functional avidity of selected γ9δ2 T cell receptors (γ9δ2TCRs), was not associated with clonal frequency. Furthermore, we analyzed the target-receptor interface and provided a 2-receptor, 3-ligand model. We found that activation was initiated by binding of the γ9δ2TCR to BTN2A1 through the regions between CDR2 and CDR3 of the TCR γ chain and modulated by the affinity of the CDR3 region of the TCRδ chain, which was phosphoantigen independent (pAg independent) and did not depend on CD277. CD277 was secondary, serving as a mandatory coactivating ligand. We found that binding of CD277 to its putative ligand did not depend on the presence of γ9δ2TCR, did depend on usage of the intracellular CD277, created pAg-dependent proximity to BTN2A1, enhanced cell-cell conjugate formation, and stabilized the immunological synapse (IS). This process critically depended on the affinity of the γ9δ2TCR and required membrane flexibility of the γ9δ2TCR and CD277, facilitating their polarization and high-density recruitment during IS formation.


Assuntos
Proliferação de Células , Ativação Linfocitária , Modelos Imunológicos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Butirofilinas/imunologia , Humanos , Células Jurkat , Proteínas de Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/patologia
8.
Data Brief ; 30: 105424, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32322610

RESUMO

A high-speed fluorescence microscope operating at a 490 Hz frame rate was used to image two different membrane proteins- the high-affinity IgE receptor FcɛRI, a transmembrane protein, and an outer-leaflet GPI-anchored protein. The IgE receptor was imaged via IgE labeled with Janelia Fluor 646 and the GPI-anchored protein was imaged using a GPI-GFP fusion protein and an ATTO 647 N labeled anti-GFP nanobody. Data was collected for both proteins in untreated cells and cells that had actin stabilized by phalloidin. This dataset can be used for development and testing of single-particle tracking methods on experimental data and to explore the hypothesis that the actin cytoskeleton may affect the movement of membrane proteins.

9.
Oncogene ; 39(19): 3910-3925, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203165

RESUMO

A principal challenge in treating acute myeloid leukemia (AML) is chemotherapy refractory disease. As such, there remains a critical need to identify key regulators of chemotherapy resistance in AML. In this study, we demonstrate that the membrane scaffold, CD82, contributes to the chemoresistant phenotype of AML. Using an RNA-seq approach, we identified the increased expression of the tetraspanin family member, CD82, in response to the chemotherapeutic, daunorubicin. Analysis of the TARGET and BEAT AML databases identifies a correlation between CD82 expression and overall survival of AML patients. Moreover, using a combination of cell lines and patient samples, we find that CD82 overexpression results in significantly reduced cell death in response to chemotherapy. Investigation of the mechanism by which CD82 promotes AML survival in response to chemotherapy identified a crucial role for enhanced protein kinase c alpha (PKCα) signaling and downstream activation of the ß1 integrin. In addition, analysis of ß1 integrin clustering by super-resolution imaging demonstrates that CD82 expression promotes the formation of dense ß1 integrin membrane clusters. Lastly, evaluation of survival signaling following daunorubicin treatment identified robust activation of p38 mitogen-activated protein kinase (MAPK) downstream of PKCα and ß1 integrin signaling when CD82 is overexpressed. Together, these data propose a mechanism where CD82 promotes chemoresistance by increasing PKCα activation and downstream activation/clustering of ß1 integrin, leading to AML cell survival via activation of p38 MAPK. These observations suggest that the CD82-PKCα signaling axis may be a potential therapeutic target for attenuating chemoresistance signaling in AML.


Assuntos
Integrina beta1/genética , Proteína Kangai-1/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína Quinase C-alfa/genética , Adulto , Idoso , Daunorrubicina/efeitos adversos , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , RNA-Seq , Proteínas Quinases p38 Ativadas por Mitógeno/genética
10.
Mol Biol Cell ; 31(7): 695-708, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31913761

RESUMO

Differential epidermal growth factor receptor (EGFR) phosphorylation is thought to couple receptor activation to distinct signaling pathways. However, the molecular mechanisms responsible for biased signaling are unresolved due to a lack of insight into the phosphorylation patterns of full-length EGFR. We extended a single-molecule pull-down technique previously used to study protein-protein interactions to allow for robust measurement of receptor phosphorylation. We found that EGFR is predominantly phosphorylated at multiple sites, yet phosphorylation at specific tyrosines is variable and only a subset of receptors share phosphorylation at the same site, even with saturating ligand concentrations. We found distinct populations of receptors as soon as 1 min after ligand stimulation, indicating early diversification of function. To understand this heterogeneity, we developed a mathematical model. The model predicted that variations in phosphorylation are dependent on the abundances of signaling partners, while phosphorylation levels are dependent on dimer lifetimes. The predictions were confirmed in studies of cell lines with different expression levels of signaling partners, and in experiments comparing low- and high-affinity ligands and oncogenic EGFR mutants. These results reveal how ligand-regulated receptor dimerization dynamics and adaptor protein concentrations play critical roles in EGFR signaling.


Assuntos
Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/metabolismo , Multimerização Proteica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CHO , Cricetulus , Receptores ErbB/genética , Cinética , Modelos Biológicos , Mutação/genética , Fosforilação , Fosfotirosina/metabolismo , Imagem Individual de Molécula
11.
Sci Signal ; 11(540)2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042128

RESUMO

Fc receptors (FcRs) are an important bridge between the innate and adaptive immune system. Fc gamma receptor I (FcγRI; CD64), the high-affinity receptor for immunoglobulin G (IgG), plays roles in inflammation, autoimmune responses, and immunotherapy. Stimulation of myeloid cells with cytokines, such as tumor necrosis factor-α ( TNFα) and interferon-γ ( IFNγ), increases the binding of FcγRI to immune complexes (ICs), such as antibody-opsonized pathogens or tumor cells, through a process known as "inside-out" signaling. Using super-resolution imaging, we found that stimulation of cells with IL-3 also enhanced the clustering of FcγRI both before and after exposure to ICs. This increased clustering was dependent on an intact actin cytoskeleton. We found that chemical inhibition of the activity of the phosphatase PP1 reduced FcγRI inside-out signaling, although the phosphorylation of FcγRI itself was unaffected. Furthermore, the antibody-dependent cytotoxic activity of human neutrophils toward CD20-expressing tumor cells was increased after stimulation with TNFα and IFNγ. These results suggest that nanoscale reorganization of FcγRI, stimulated by cytokine-induced, inside-out signaling, enhances FcγRI cellular effector functions.


Assuntos
Citoesqueleto de Actina/metabolismo , Interferon gama/farmacologia , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Imunoglobulina G/metabolismo , Camundongos , Células Mieloides/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fosforilação , Receptores de IgG/genética , Transdução de Sinais
12.
Mol Biol Cell ; 28(23): 3397-3414, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28855374

RESUMO

Cross-linking of immunoglobulin E-bound FcεRI triggers multiple cellular responses, including degranulation and cytokine production. Signaling is dependent on recruitment of Syk via docking of its dual SH2 domains to phosphorylated tyrosines within the FcεRI immunoreceptor tyrosine-based activation motifs. Using single-molecule imaging in live cells, we directly visualized and quantified the binding of individual mNeonGreen-tagged Syk molecules as they associated with the plasma membrane after FcεRI activation. We found that Syk colocalizes transiently to FcεRI and that Syk-FcεRI binding dynamics are independent of receptor aggregate size. Substitution of glutamic acid for tyrosine between the Syk SH2 domains (Syk-Y130E) led to an increased Syk-FcεRI off-rate, loss of site-specific Syk autophosphorylation, and impaired downstream signaling. Genome edited cells expressing only Syk-Y130E were deficient in antigen-stimulated calcium release, degranulation, and production of some cytokines (TNF-a, IL-3) but not others (MCP-1, IL-4). We propose that kinetic discrimination along the FcεRI signaling pathway occurs at the level of Syk-FcεRI interactions, with key outcomes dependent upon sufficiently long-lived Syk binding events.


Assuntos
Receptores de IgE/metabolismo , Quinase Syk/metabolismo , Quinase Syk/fisiologia , Animais , Degranulação Celular , Linhagem Celular Tumoral , Imunoglobulina E/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Mastócitos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Ratos , Transdução de Sinais , Imagem Individual de Molécula/métodos , Tirosina/metabolismo , Domínios de Homologia de src
13.
Sci Rep ; 6: 29859, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27417454

RESUMO

Patients with acute myeloid leukemia (AML) have increased myeloid cells within their bone marrow that exhibit aberrant signaling. Therefore, therapeutic targets that modulate disrupted signaling cascades are of significant interest. In this study, we demonstrate that the tetraspanin membrane scaffold, CD82, regulates protein kinase c alpha (PKCα)-mediated signaling critical for AML progression. Utilizing a palmitoylation mutant form of CD82 with disrupted membrane organization, we find that the CD82 scaffold controls PKCα expression and activation. Combining single molecule and ensemble imaging measurements, we determine that CD82 stabilizes PKCα activation at the membrane and regulates the size of PKCα membrane clusters. Further evaluation of downstream effector signaling identified robust and sustained activation of ERK1/2 upon CD82 overexpression that results in enhanced AML colony formation. Together, these data propose a mechanism where CD82 membrane organization regulates sustained PKCα signaling that results in an aggressive leukemia phenotype. These observations suggest that the CD82 scaffold may be a potential therapeutic target for attenuating aberrant signal transduction in AML.


Assuntos
Proteína Kangai-1/genética , Leucemia Mieloide Aguda/genética , Proteína Quinase C-alfa/genética , Tetraspaninas/genética , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação Leucêmica da Expressão Gênica/genética , Humanos , Leucemia Mieloide Aguda/patologia , Lipoilação , Transdução de Sinais/genética , Tetraspaninas/metabolismo
14.
Mol Biol Cell ; 26(22): 4087-99, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26337388

RESUMO

Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non-small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Família de Proteínas EGF/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/enzimologia , Animais , Células CHO , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Transformação Celular Neoplásica , Cricetulus , Família de Proteínas EGF/genética , Receptores ErbB/genética , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Microscopia Confocal , Mutação , Fosforilação , Agregados Proteicos , Inibidores de Proteínas Quinases , Multimerização Proteica , Transdução de Sinais
15.
PLoS One ; 10(4): e0123941, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860558

RESUMO

Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures using multi-color imaging is complicated and limited by the differing properties of various organic dyes including their fluorescent state duty cycle, photons per switching event, number of fluorescent cycles before irreversible photobleaching, and overall sensitivity to buffer conditions. In addition, multiple color imaging requires consideration of multiple optical paths or chromatic aberration that can lead to differential aberrations that are important at the nanometer scale. Here, we report a method for sequential labeling and imaging that allows for SR imaging of multiple targets using a single fluorophore with negligible cross-talk between images. Using brightfield image correlation to register and overlay multiple image acquisitions with ~10 nm overlay precision in the x-y imaging plane, we have exploited the optimal properties of AlexaFluor647 for dSTORM to image four distinct cellular proteins. We also visualize the changes in co-localization of the epidermal growth factor (EGF) receptor and clathrin upon EGF addition that are consistent with clathrin-mediated endocytosis. These results are the first to demonstrate sequential SR (s-SR) imaging using direct stochastic reconstruction microscopy (dSTORM), and this method for sequential imaging can be applied to any superresolution technique.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Linhagem Celular , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Receptores ErbB/metabolismo , Humanos , Ligação Proteica , Transporte Proteico , Tubulina (Proteína)/metabolismo
16.
Biophys J ; 108(5): 1013-26, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762314

RESUMO

Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell's proliferation potential.


Assuntos
Receptores ErbB/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Fosforilação , Estabilidade Proteica , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo
17.
Mol Biol Cell ; 25(10): 1560-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623721

RESUMO

Hematopoietic stem/progenitor cell (HSPC) interactions with the bone marrow microenvironment are important for maintaining HSPC self-renewal and differentiation. In recent work, we identified the tetraspanin protein, CD82, as a regulator of HPSC adhesion and homing to the bone marrow, although the mechanism by which CD82 mediated adhesion was unclear. In the present study, we determine that CD82 expression alters cell-matrix adhesion, as well as integrin surface expression. By combining the superresolution microscopy imaging technique, direct stochastic optical reconstruction microscopy, with protein clustering algorithms, we identify a critical role for CD82 in regulating the membrane organization of α4 integrin subunits. Our data demonstrate that CD82 overexpression increases the molecular density of α4 within membrane clusters, thereby increasing cellular adhesion. Furthermore, we find that the tight packing of α4 into membrane clusters depend on CD82 palmitoylation and the presence of α4 integrin ligands. In combination, these results provide unique quantifiable evidence of CD82's contribution to the spatial arrangement of integrins within the plasma membrane and suggest that regulation of integrin density by tetraspanins is a critical component of cell adhesion.


Assuntos
Adesão Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Integrina alfa4/metabolismo , Integrina alfa4beta1/metabolismo , Proteína Kangai-1/metabolismo , Adesão Celular/genética , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular , Junções Célula-Matriz/metabolismo , Estruturas Celulares/metabolismo , Endocitose , Fibronectinas/metabolismo , Humanos , Integrina alfa4/biossíntese , Integrina alfa4beta1/biossíntese , Proteína Kangai-1/biossíntese , Proteína Kangai-1/genética , Lipoilação , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/fisiologia
18.
Mol Cell Biol ; 34(6): 965-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24379439

RESUMO

Often considered to be a "dead" kinase, erbB3 is implicated in escape from erbB-targeted cancer therapies. Here, heregulin stimulation is shown to markedly upregulate kinase activity in erbB3 immunoprecipitates. Intact, activated erbB3 phosphorylates tyrosine sites in an exogenous peptide substrate, and this activity is abolished by mutagenesis of lysine 723 in the catalytic domain. Enhanced erbB3 kinase activity is linked to heterointeractions with catalytically active erbB2, since it is largely blocked in cells pretreated with lapatinib or pertuzumab. erbB2 activation of erbB3 is not dependent on equal surface levels of these receptors, since it occurs even in erbB3-transfected CHO cells with disproportionally small amounts of erbB2. We tested a model in which transient erbB3/erbB2 heterointeractions set the stage for erbB3 homodimers to be signaling competent. erbB3 homo- and heterodimerization events were captured in real time on live cells using single-particle tracking of quantum dot probes bound to ligand or hemagglutinin tags on recombinant receptors.


Assuntos
Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , Humanos , Ligantes , Mutação/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-24370847

RESUMO

Signal transduction is regulated by protein-protein interactions. In the case of the ErbB family of receptor tyrosine kinases (RTKs), the precise nature of these interactions remains a topic of debate. In this review, we describe state-of-the-art imaging techniques that are providing new details into receptor dynamics, clustering, and interactions. We present the general principles of these techniques, their limitations, and the unique observations they provide about ErbB spatiotemporal organization.


Assuntos
Receptores ErbB/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Transdução de Sinais/fisiologia , Receptores ErbB/ultraestrutura , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos
20.
PLoS One ; 8(5): e64320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717596

RESUMO

Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping.


Assuntos
Cor , Microscopia/instrumentação , Pontos Quânticos , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/metabolismo , Microscopia/métodos , Reprodutibilidade dos Testes , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA