Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Ther ; 32(1): 124-139, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37990494

RESUMO

Quiescent human hematopoietic stem cells (HSC) are ideal targets for gene therapy applications due to their preserved stemness and repopulation capacities; however, they have not been exploited extensively because of their resistance to genetic manipulation. We report here the development of a lentiviral transduction protocol that overcomes this resistance in long-term repopulating quiescent HSC, allowing their efficient genetic manipulation. Mechanistically, lentiviral vector transduction of quiescent HSC was found to be restricted at the level of vector entry and by limited pyrimidine pools. These restrictions were overcome by the combined addition of cyclosporin H (CsH) and deoxynucleosides (dNs) during lentiviral vector transduction. Clinically relevant transduction levels were paired with higher polyclonal engraftment of long-term repopulating HSC as compared with standard ex vivo cultured controls. These findings identify the cell-intrinsic barriers that restrict the transduction of quiescent HSC and provide a means to overcome them, paving the way for the genetic engineering of unstimulated HSC.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Transdução Genética , Lentivirus/genética , Terapia Genética/métodos , Imunidade Inata , Vetores Genéticos/genética , Antígenos CD34
2.
Hum Gene Ther ; 34(17-18): 793-807, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37675899

RESUMO

ß-Thalassemia and sickle cell disease are autosomal recessive disorders of red blood cells due to mutations in the adult ß-globin gene, with a worldwide diffusion. The severe forms of hemoglobinopathies are fatal if untreated, and allogeneic bone marrow transplantation can be offered to a limited proportion of patients. The unmet clinical need and the disease incidence have promoted the development of new genetic therapies based on the engineering of autologous hematopoietic stem cells. Here, the steps of ex vivo gene therapy development are reviewed along with results from clinical trials and recent new approaches employing cutting edge gene editing tools.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Talassemia beta , Adulto , Humanos , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Anemia Falciforme/genética , Anemia Falciforme/terapia , Talassemia beta/genética , Talassemia beta/terapia , Terapia Genética , Edição de Genes
3.
Kidney Int ; 104(1): 61-73, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990212

RESUMO

Anemia is a common complication of systemic inflammation. Proinflammatory cytokines both decrease erythroblast sensitivity to erythropoietin (EPO) and increase the levels of the hepatic hormone hepcidin, sequestering iron in stores and causing functional iron deficiency. Anemia of chronic kidney disease (CKD) is a peculiar form of anemia of inflammation, characterized by impaired EPO production paralleling progressive kidney damage. Traditional therapy based on increased EPO (often in combination with iron) may have off-target effects due to EPO interaction with its non-erythroid receptors. Transferrin Receptor 2 (Tfr2) is a mediator of the iron-erythropoiesis crosstalk. Its deletion in the liver hampers hepcidin production, increasing iron absorption, whereas its deletion in the hematopoietic compartment increases erythroid EPO sensitivity and red blood cell production. Here, we show that selective hematopoietic Tfr2 deletion ameliorates anemia in mice with sterile inflammation in the presence of normal kidney function, promoting EPO responsiveness and erythropoiesis without increasing serum EPO levels. In mice with CKD, characterized by absolute rather than functional iron deficiency, Tfr2 hematopoietic deletion had a similar effect on erythropoiesis but anemia improvement was transient because of limited iron availability. Also, increasing iron levels by downregulating only hepatic Tfr2 had a minor effect on anemia. However, simultaneous deletion of hematopoietic and hepatic Tfr2, stimulating erythropoiesis and increased iron supply, was sufficient to ameliorate anemia for the entire protocol. Thus, our results suggest that combined targeting of hematopoietic and hepatic Tfr2 may be a therapeutic option to balance erythropoiesis stimulation and iron increase, without affecting EPO levels.


Assuntos
Anemia , Eritropoetina , Deficiências de Ferro , Insuficiência Renal Crônica , Camundongos , Animais , Ferro/metabolismo , Eritropoese/genética , Hepcidinas/genética , Hepcidinas/metabolismo , Modelos Animais de Doenças , Anemia/etiologia , Anemia/genética , Eritropoetina/metabolismo , Inflamação/tratamento farmacológico , Inflamação/complicações , Receptores da Transferrina/genética , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética
4.
Blood ; 139(23): 3387-3401, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35073399

RESUMO

Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and ß-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Adulto , Medula Óssea , Células da Medula Óssea/fisiologia , Eritropoese , Humanos , Megacariócitos
5.
Haematologica ; 106(3): 795-805, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32107334

RESUMO

Nuclear receptor coactivator 4 (NCOA4) promotes ferritin degradation and Ncoa4-ko mice in a C57BL/6 background show microcytosis and mild anemia, aggravated by iron deficiency. To understand tissue-specific contributions of NCOA4-mediated ferritinophagy we explored the effect of Ncoa4 genetic ablation in the iron-rich Sv129/J strain. Increased body iron content protects these mice from anemia and, in basal conditions, Sv129/J Ncoa4-ko mice show only microcytosis; nevertheless, when fed a low-iron diet they develop a more severe anemia compared to that of wild-type animals. Reciprocal bone marrow (BM) transplantation from wild-type donors into Ncoa4-ko and from Ncoa4-ko into wild-type mice revealed that microcytosis and susceptibility to iron deficiency anemia depend on BM-derived cells. Reconstitution of erythropoiesis with normalization of red blood count and hemoglobin concentration occurred at the same rate in transplanted animals independently of the genotype. Importantly, NCOA4 loss did not affect terminal erythropoiesis in iron deficiency, both in total and specific BM Ncoa4-ko animals compared to controls. On the contrary, upon a low iron diet, spleen from wild-type animals with Ncoa4-ko BM displayed marked iron retention compared to (wild-type BM) controls, indicating defective macrophage iron release in the former. Thus, erythropoietin administration failed to mobilize iron from stores in Ncoa4-ko animals. Furthermore, Ncoa4 inactivation in thalassemic mice did not worsen the hematologic phenotype. Overall our data reveal a major role for NCOA4-mediated ferritinophagy in macrophages to favor iron release for erythropoiesis, especially in iron deficiency.


Assuntos
Eritropoese , Coativadores de Receptor Nuclear , Animais , Ferritinas , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
6.
Blood ; 136(17): 1968-1979, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32556142

RESUMO

ß-Thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly, and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (ie, using hepcidin activators like Tmprss6-antisense oligonucleotides [ASOs]) or increase erythropoiesis (by erythropoietin [EPO] administration or modulating the ability of transferrin receptor 2 [Tfr2] to control red blood cell [RBC] synthesis). Targeting Tmprss6 messenger RNA by Tmprss6-ASO was proven to be effective in improving IE and splenomegaly by inducing iron restriction. However, we postulated that combinatorial strategies might be superior to single therapies. Here, we combined Tmprss6-ASO with EPO administration or removal of a single Tfr2 allele in the bone marrow of animals affected by ß-thalassemia intermedia (Hbbth3/+). EPO administration alone or removal of a single Tfr2 allele increased hemoglobin levels and RBCs. However, EPO or Tfr2 single-allele deletion alone, respectively, exacerbated or did not improve splenomegaly in ß-thalassemic mice. To overcome this issue, we postulated that some level of iron restriction (by targeting Tmprss6) would improve splenomegaly while preserving the beneficial effects on RBC production mediated by EPO or Tfr2 deletion. While administration of Tmprss6-ASO alone improved the anemia, the combination of Tmprss6-ASO + EPO or Tmprss6-ASO + Tfr2 single-allele deletion produced significantly higher hemoglobin levels and reduced splenomegaly. In conclusion, our results clearly indicate that these combinatorial approaches are superior to single treatments in ameliorating IE and anemia in ß-thalassemia and could provide guidance to translate some of these approaches into viable therapies.


Assuntos
Eritropoetina/administração & dosagem , Eritropoetina/genética , Terapia Genética/métodos , Proteínas de Membrana/antagonistas & inibidores , Oligonucleotídeos Antissenso/administração & dosagem , Talassemia beta/terapia , Animais , Células Cultivadas , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/prevenção & controle , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligonucleotídeos Antissenso/farmacologia , Receptores da Transferrina/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Talassemia beta/metabolismo
7.
Blood ; 136(5): 610-622, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32344432

RESUMO

Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche that tune hematopoiesis at steady state and in hematologic disorders. To understand HSC-niche interactions in altered nonmalignant homeostasis, we selected ß-thalassemia, a hemoglobin disorder, as a paradigm. In this severe congenital anemia, alterations secondary to the primary hemoglobin defect have a potential impact on HSC-niche cross talk. We report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued after cell transplantation into a normal microenvironment, thus proving the active role of the BM stroma. Consistent with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. In vivo activation of PTH signaling through the reestablished Jagged1 and osteopontin levels correlated with the rescue of the functional pool of th3 HSCs by correcting HSC-niche cross talk. Reduced HSC quiescence was confirmed in thalassemic patients, along with altered features of the BM stromal niche. Our findings reveal a defect in HSCs in ß-thalassemia induced by an altered BM microenvironment and provide novel and relevant insight for improving transplantation and gene therapy approaches.


Assuntos
Medula Óssea/patologia , Células-Tronco Hematopoéticas/patologia , Nicho de Células-Tronco , Talassemia beta/patologia , Animais , Feminino , Hematopoese/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Nat Med ; 25(2): 234-241, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664781

RESUMO

ß-thalassemia is caused by ß-globin gene mutations resulting in reduced (ß+) or absent (ß0) hemoglobin production. Patient life expectancy has recently increased, but the need for chronic transfusions in transfusion-dependent thalassemia (TDT) and iron chelation impairs quality of life1. Allogeneic hematopoietic stem cell (HSC) transplantation represents the curative treatment, with thalassemia-free survival exceeding 80%. However, it is available to a minority of patients and is associated with morbidity, rejection and graft-versus-host disease2. Gene therapy with autologous HSCs modified to express ß-globin represents a potential therapeutic option. We treated three adults and six children with ß0 or severe ß+ mutations in a phase 1/2 trial ( NCT02453477 ) with an intrabone administration of HSCs transduced with the lentiviral vector GLOBE. Rapid hematopoietic recovery with polyclonal multilineage engraftment of vector-marked cells was achieved, with a median of 37.5% (range 12.6-76.4%) in hematopoietic progenitors and a vector copy number per cell (VCN) of 0.58 (range 0.10-1.97) in erythroid precursors at 1 year, in absence of clonal dominance. Transfusion requirement was reduced in the adults. Three out of four evaluable pediatric participants discontinued transfusions after gene therapy and were transfusion independent at the last follow-up. Younger age and persistence of higher VCN in the repopulating hematopoietic cells are associated with better outcome.


Assuntos
Transfusão de Sangue , Osso e Ossos/patologia , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Talassemia beta/genética , Talassemia beta/terapia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Resultado do Tratamento
10.
Mol Ther Methods Clin Dev ; 11: 9-28, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30320151

RESUMO

Gene therapy clinical trials require rigorous non-clinical studies in the most relevant models to assess the benefit-to-risk ratio. To support the clinical development of gene therapy for ß-thalassemia, we performed in vitro and in vivo studies for prediction of safety. First we developed newly GLOBE-derived vectors that were tested for their transcriptional activity and potential interference with the expression of surrounding genes. Because these vectors did not show significant advantages, GLOBE lentiviral vector (LV) was elected for further safety characterization. To support the use of hematopoietic stem cells (HSCs) transduced by GLOBE LV for the treatment of ß-thalassemia, we conducted toxicology, tumorigenicity, and biodistribution studies in compliance with the OECD Principles of Good Laboratory Practice. We demonstrated a lack of toxicity and tumorigenic potential associated with GLOBE LV-transduced cells. Vector integration site (IS) studies demonstrated that both murine and human transduced HSCs retain self-renewal capacity and generate new blood cell progeny in the absence of clonal dominance. Moreover, IS analysis showed an absence of enrichment in cancer-related genes, and the genes targeted by GLOBE LV in human HSCs are well known sites of integration, as seen in other lentiviral gene therapy trials, and have not been associated with clonal expansion. Taken together, these integrated studies provide safety data supporting the clinical application of GLOBE-mediated gene therapy for ß-thalassemia.

11.
Blood Cells Mol Dis ; 70: 87-101, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29336892

RESUMO

Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with an integrating lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Studies and safety works demonstrated the potential therapeutic efficacy and safety of this approach, providing the rationale for clinical translation. The outcomes of early clinical trials, although showing promising results, have highlighted the current limitations to a more general application. These include the nature, source and age of repopulating hematopoietic stem cells, the suboptimal transduction efficiency and gene expression levels, the toxicity and efficacy of bone marrow conditioning, the stress status of bone marrow microenvironment in chronic diseases such as ß-thalassemia and sickle cell disease. Recently, gene editing strategies based on the use of nucleases offered a novel approach to increase globin expression in a quasi-physiological way, independently from the addition of transgenes and viral sequences to the human genome. This review will discuss the current status of gene therapy for ß-thalassemia and sickle cell disease with a perspective towards the improvements necessary in the context of clinical translation.


Assuntos
Edição de Genes , Terapia Genética , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Hemoglobinas/genética , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Animais , Ensaios Clínicos como Assunto , Terapia Combinada , Predisposição Genética para Doença , Terapia Genética/métodos , Humanos , Resultado do Tratamento , Talassemia beta/diagnóstico , Talassemia beta/genética
12.
Stem Cell Reports ; 8(4): 977-990, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28330619

RESUMO

Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38- cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.


Assuntos
Engenharia Celular/métodos , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Transdução Genética/métodos , ADP-Ribosil Ciclase 1/análise , Animais , Antígenos CD34/análise , Técnicas de Cultura de Células , Proliferação de Células , Terapia Genética/métodos , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Camundongos Endogâmicos NOD
13.
Haematologica ; 102(4): e120-e124, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28034992
14.
Cancer Res ; 70(20): 7949-59, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20924107

RESUMO

Ectopic expression of CAAT/enhancer binding protein α (C/EBPα) in p210BCR/ABL-expressing cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To dissect the molecular mechanisms underlying these biological effects, C/EBPα-regulated genes were identified by microarray analysis in 32D-p210BCR/ABL cells. One of the genes whose expression was activated by C/EBPα in a DNA binding-dependent manner in BCR/ABL-expressing cells is the transcriptional repressor Gfi-1. We show here that C/EBPα interacts with a functional C/EBP binding site in the Gfi-1 5'-flanking region and enhances the promoter activity of Gfi-1. Moreover, in K562 cells, RNA interference-mediated downregulation of Gfi-1 expression partially rescued the proliferation-inhibitory but not the differentiation-inducing effect of C/EBPα. Ectopic expression of wild-type Gfi-1, but not of a transcriptional repressor mutant (Gfi-1P2A), inhibited proliferation and markedly suppressed colony formation but did not induce granulocytic differentiation of BCR/ABL-expressing cells. By contrast, Gfi-1 short hairpin RNA-tranduced CD34(+) chronic myeloid leukemia cells were markedly more clonogenic than the scramble-transduced counterpart. Together, these studies indicate that Gfi-1 is a direct target of C/EBPα required for its proliferation and survival-inhibitory effects in BCR/ABL-expressing cells.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Fusão bcr-abl/genética , Fatores de Transcrição/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Divisão Celular , Ensaio de Unidades Formadoras de Colônias , Primers do DNA , Regulação para Baixo , Amplificação de Genes , Regulação da Expressão Gênica , Genes Reporter , Humanos , Sequências Repetidas Invertidas/genética , Células K562 , Luciferases/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/citologia , Linfócitos T/fisiologia , Transcrição Gênica , Transfecção
15.
J Clin Invest ; 119(5): 1109-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19363292

RESUMO

Imatinib mesylate (IM), a potent inhibitor of the BCR/ABL tyrosine kinase, has become standard first-line therapy for patients with chronic myeloid leukemia (CML), but the frequency of resistance increases in advancing stages of disease. Elimination of BCR/ABL-dependent intracellular signals triggers apoptosis, but it is unclear whether this activates additional cell survival and/or death pathways. We have shown here that IM induces autophagy in CML blast crisis cell lines, CML primary cells, and p210BCR/ABL-expressing myeloid precursor cells. IM-induced autophagy did not involve c-Abl or Bcl-2 activity but was associated with ER stress and was suppressed by depletion of intracellular Ca2+, suggesting it is mechanistically nonoverlapping with IM-induced apoptosis. We further demonstrated that suppression of autophagy using either pharmacological inhibitors or RNA interference of essential autophagy genes enhanced cell death induced by IM in cell lines and primary CML cells. Critically, the combination of a tyrosine kinase inhibitor (TKI), i.e., IM, nilotinib, or dasatinib, with inhibitors of autophagy resulted in near complete elimination of phenotypically and functionally defined CML stem cells. Together, these findings suggest that autophagy inhibitors may enhance the therapeutic effects of TKIs in the treatment of CML.


Assuntos
Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/fisiologia , Benzamidas , Cálcio/metabolismo , Morte Celular/fisiologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Dasatinibe , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Camundongos , Camundongos Endogâmicos C3H , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Interferência de RNA , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Fator de Transcrição CHOP/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Blood ; 112(5): 1942-50, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18550858

RESUMO

Ectopic C/EBPalpha expression in p210(BCR/ABL)-expressing hematopoietic cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To assess the underlying mechanisms, C/EBPalpha targets were identified by microarray analyses. Upon C/EBPalpha activation, expression of c-Myb and GATA-2 was repressed in 32D-BCR/ABL, K562, and chronic myelogenous leukemia (CML) blast crisis (BC) primary cells but only c-Myb levels decreased slightly in CD34(+) normal progenitors. The role of these 2 genes for the effects of C/EBPalpha was assessed by perturbing their expression in K562 cells. Ectopic c-Myb expression blocked the proliferation inhibition- and differentiation-inducing effects of C/EBPalpha, whereas c-Myb siRNA treatment enhanced C/EBPalpha-mediated proliferation inhibition and induced changes in gene expression indicative of monocytic differentiation. Ectopic GATA-2 expression suppressed the proliferation inhibitory effect of C/EBPalpha but blocked in part the effect on differentiation; GATA-2 siRNA treatment had no effects on C/EBPalpha induction of differentiation but inhibited proliferation of K562 cells, alone or upon C/EBPalpha activation. In summary, the effects of C/EBPalpha in p210(BCR/ABL)-expressing cells depend, in part, on transcriptional repression of c-Myb and GATA-2. Since perturbation of c-Myb and GATA-2 expression has nonidentical consequences for proliferation and differentiation of K562 cells, the effects of C/EBPalpha appear to involve dif-ferent transcription-regulated targets.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , Proteínas de Fusão bcr-abl/biossíntese , Fator de Transcrição GATA2/genética , Genes myb/efeitos dos fármacos , Sequência de Bases , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Primers do DNA/genética , Proteínas de Fusão bcr-abl/genética , Genes abl , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , RNA Interferente Pequeno/genética , Transcrição Gênica/efeitos dos fármacos , Transfecção
17.
Blood ; 111(9): 4771-9, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18227349

RESUMO

The c-Myb gene encodes a transcription factor required for proliferation and survival of normal myeloid progenitors and leukemic blast cells. Targeting of c-Myb by antisense oligodeoxynucleotides has suggested that myeloid leukemia blasts (including chronic myelogenous leukemia [CML]-blast crisis cells) rely on c-Myb expression more than normal progenitors, but a genetic approach to assess the requirement of c-Myb by p210(BCR/ABL)-transformed hematopoietic progenitors has not been taken. We show here that loss of a c-Myb allele had modest effects (20%-28% decrease) on colony formation of nontransduced progenitors, while the effect on p210(BCR/ABL)-expressing Lin(-) Sca-1(+) and Lin(-) Sca-1(+)Kit(+) cells was more pronounced (50%-80% decrease). Using a model of CML-blast crisis, mice (n = 14) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/w) marrow cells developed leukemia rapidly and had a median survival of 26 days, while only 67% of mice (n = 12) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/d) marrow cells died of leukemia with a median survival of 96 days. p210(BCR/ABL)-transduced c-Myb(w/w) and c-Myb(w/d) marrow progenitors expressed similar levels of the c-Myb-regulated genes c-Myc and cyclin B1, while those of Bcl-2 were reduced. However, ectopic Bcl-2 expression did not enhance colony formation of p210(BCR/ABL)-transduced c-Myb(w/d) Lin(-)Sca-1(+)Kit(+) cells. Together, these studies support the requirement of c-Myb for p210(BCR/ABL)-dependent leukemogenesis.


Assuntos
Transformação Celular Neoplásica , Proteínas de Fusão bcr-abl/fisiologia , Células-Tronco Hematopoéticas/patologia , Leucemia/etiologia , Proteínas Proto-Oncogênicas c-myb/fisiologia , Animais , Proteínas de Fusão bcr-abl/administração & dosagem , Proteínas de Fusão bcr-abl/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Leucemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Transdução Genética
18.
Blood Cells Mol Dis ; 39(3): 292-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17644012

RESUMO

The c-myb gene is preferentially expressed in primitive hematopoietic cell and plays a central role in the control of cell proliferation, differentiation and survival by regulating the transcription of several genes implicated in these processes including the antiapoptotic Bcl-2. We show here that, compared to wild-type c-Myb, overexpression of a degradation resistant c-Myb mutant [Delta(358-452) c-Myb] enhances the clonogenic potential of hematopoietic progenitors as indicated by increased cytokine-dependent primary and secondary colony formation of Lin(-) Sca-1(+) Kit(+) mouse marrow cells. Moreover, proliferation assays of IL-3 dependent myeloid precursor 32Dcl3 cells co-expressing Bcl-2 and c-Myb indicate that these cells continue to proliferate in the absence of IL-3 and this effect is more apparent in cells expressing the degradation resistant Delta(358-452) c-Myb. Interestingly, overexpression of Delta(358-452) c-Myb is by itself sufficient to protect 32Dcl3 cells from apoptosis induced by IL-3 deprivation; moreover, these cells are also increased in number which most likely reflects the enhanced proliferative potential conferred by Delta(358-452) c-Myb to apoptosis-resistant cells.


Assuntos
Células-Tronco Hematopoéticas/citologia , Interleucina-3/metabolismo , Células Progenitoras Mieloides/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes , Células Progenitoras Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Transdução Genética
19.
Cancer Res ; 66(3): 1675-83, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16452227

RESUMO

In mammalian cells, DNA replication takes place in functional subnuclear compartments, called replication factories, where replicative factors accumulate. The distribution pattern of replication factories is diagnostic of the different moments (early, mid, and late) of the S phase. This dynamic organization is affected by different agents that induce cell cycle checkpoint activation via DNA damage or stalling of replication forks. Here, we explore the cell response to etoposide, an anticancer drug belonging to the topoisomerase II poisons. Etoposide does not induce an immediate block of DNA synthesis and progressively affects the distribution of replication proteins in S phase. First, it triggers the formation of large nuclear foci that contain the single-strand DNA binding protein replication protein A (RPA), suggesting that lesions produced by the drug are processed into extended single-stranded regions. These RPA foci colocalize with DNA replicated at the beginning of the treatment. Etoposide also triggers the dispersal of replicative proteins, proliferating cell nuclear antigen and DNA ligase I, from replication factories. This event requires the activity of the ataxia telangiectasia Rad3-related (ATR) checkpoint kinase. By comparing the effect of the drug in cell lines defective in different DNA repair and checkpoint pathways, we show that, along with the downstream kinase Chk1, the Nbs1 protein, mutated in the Nijmegen breakage syndrome, is also relevant for this response and for ATR-dependent phosphorylation. Finally, our analysis evidences a critical role of Nbs1 in the etoposide-induced inhibition of DNA replication in early S phase.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , DNA Ligases/metabolismo , Replicação do DNA/efeitos dos fármacos , Etoposídeo/farmacologia , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Quinase 1 do Ponto de Checagem , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , DNA Ligase Dependente de ATP , Replicação do DNA/fisiologia , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Replicação A/metabolismo , Fase S/efeitos dos fármacos
20.
J Cell Sci ; 117(Pt 22): 5221-31, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15454574

RESUMO

In eukaryotes, initiation of DNA replication requires the activity of the origin recognition complex (ORC). The largest subunit of this complex, Orc1p, has a critical role in this activity. Here we have studied the subnuclear distribution of the overexpressed human Orc1p during the cell cycle. Orc1p is progressively degraded during S-phase according to a spatio-temporal program and it never colocalizes with replication factories. Orc1p is resynthesized in G1. In early G1, the protein is distributed throughout the cell nucleus, but successively it preferentially associates with heterochromatin. This association requires a functional ATP binding site and a protein region partially overlapping the bromo-adjacent homology domain at the N-terminus of Orc1p. The same N-terminal region mediates the in vitro interaction with heterochromatin protein 1 (HP1). Fluorescence resonance energy transfer (FRET) experiments demonstrate the interaction of human Orc1p and HP1 in vivo. Our data suggest a role of HP1 in the recruitment but not in the stable association of Orc1p with heterochromatin. Indeed, the subnuclear distribution of Orc1p is not affected by treatments that trigger the dispersal of HP1.


Assuntos
Proteínas de Ligação a DNA , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Western Blotting , Células COS , Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/química , Replicação do DNA , Transferência Ressonante de Energia de Fluorescência , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Heterocromatina/química , Heterocromatina/metabolismo , Humanos , Imunoprecipitação , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Células NIH 3T3 , Complexo de Reconhecimento de Origem , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Estrutura Terciária de Proteína , Ribonuclease Pancreático/metabolismo , Fase S , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA