Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 16(5): 1026-37, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21794079

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal inherited muscle disorder. Pathological characteristics of DMD skeletal muscles include, among others, abnormal Ca(2+) homeostasis and cell signalling. Here, in the mdx mouse model of DMD, we demonstrate significant P2X7 receptor abnormalities in isolated primary muscle cells and cell lines and in dystrophic muscles in vivo. P2X7 mRNA expression in dystrophic muscles was significantly up-regulated but without alterations of specific splice variant patterns. P2X7 protein was also up-regulated and this was associated with altered function of P2X7 receptors producing increased responsiveness of cytoplasmic Ca(2+) and extracellular signal-regulated kinase (ERK) phosphorylation to purinergic stimulation and altered sensitivity to NAD. Ca(2+) influx and ERK signalling were stimulated by ATP and BzATP, inhibited by specific P2X7 antagonists and insensitive to ivermectin, confirming P2X7 receptor involvement. Despite the presence of pannexin-1, prolonged P2X7 activation did not trigger cell permeabilization to propidium iodide or Lucifer yellow. In dystrophic mice, in vivo treatment with the P2X7 antagonist Coomassie Brilliant Blue reduced the number of degeneration-regeneration cycles in mdx skeletal muscles. Altered P2X7 expression and function is thus an important feature in dystrophic mdx muscle and treatments aiming to inhibit P2X7 receptor might slow the progression of this disease.


Assuntos
Distrofia Muscular Animal/fisiopatologia , Isoformas de Proteínas/fisiologia , Receptores Purinérgicos P2X7/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/fisiologia , Linhagem Celular , Conexinas/análise , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Ivermectina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/metabolismo , Proteínas do Tecido Nervoso/análise , Fosforilação/fisiologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/biossíntese , Regulação para Cima
2.
Neurobiol Dis ; 43(1): 228-38, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21440627

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, in the majority of cases caused by mutations in the MLC1 gene. MRI from MLC patients shows diffuse cerebral white matter signal abnormality and swelling, with evidence of increased water content. Histopathology in a MLC patient shows vacuolation of myelin, which causes the cerebral white matter swelling. MLC1 protein is expressed in astrocytic processes that are part of blood- and cerebrospinal fluid-brain barriers. We aimed to create an astrocyte cell model of MLC disease. The characterization of rat astrocyte cultures revealed MLC1 localization in cell-cell contacts, which contains other proteins described typically in tight and adherent junctions. MLC1 localization in these contacts was demonstrated to depend on the actin cytoskeleton; it was not altered when disrupting the microtubule or the GFAP networks. In human tissues, MLC1 and the protein Zonula Occludens 1 (ZO-1), which is linked to the actin cytoskeleton, co-localized by EM immunostaining and were specifically co-immunoprecipitated. To create an MLC cell model, knockdown of MLC1 in primary astrocytes was performed. Reduction of MLC1 expression resulted in the appearance of intracellular vacuoles. This vacuolation was reversed by the co-expression of human MLC1. Re-examination of a human brain biopsy from an MLC patient revealed that vacuoles were also consistently present in astrocytic processes. Thus, vacuolation of astrocytes is also a hallmark of MLC disease.


Assuntos
Astrócitos/metabolismo , Cistos/genética , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Vacúolos/genética , Adolescente , Animais , Astrócitos/patologia , Células Cultivadas , Cistos/fisiopatologia , Regulação para Baixo/genética , Líquido Extracelular/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Ratos , Ratos Sprague-Dawley , Vacúolos/patologia
3.
Cell Tissue Res ; 327(1): 67-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16868787

RESUMO

The alpha- and beta-dystrobrevins (DBs) belong to a family of dystrophin-related and dystrophin-associated proteins that are members of the dystrophin-associated protein complex (DAPC). This complex provides a link between the cytoskeleton and the extracellular matrix or other cells. However, specific functions of the two dystrobrevins remain largely unknown, with alpha-DB being believed to have a role mainly in skeletal muscle. Here, we describe previously unknown expression patterns and the localisation and molecular characteristics of alpha-DB isoforms in non-muscle mouse tissues. We demonstrate a highly specific sub-cellular distribution of alpha-DB in organs forming blood-tissue barriers. We show alpha-DB expression and localisation in testicular Sertoli cells, stomach and respiratory epithelia and provide electron-microscopic evidence for its immunolocalisation in these cells and in the central nervous system. Moreover, we present the molecular characterisation of alpha-DB transcript in these tissues and provide evidence for a distinct heterogeneity of associations between alpha-DB and dystrophins and utrophin in normal and dystrophic non-muscle tissues. Together, our results indicate that alpha-DB, in addition to its role in skeletal muscle, may also be required for the proper function of specific non-muscle tissues and that disruption of DAPC might lead to tissue-blood barrier abnormalities.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Epitélio/metabolismo , Mucosa Gástrica/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Células de Sertoli/metabolismo , Animais , Barreira Alveolocapilar/metabolismo , Barreira Alveolocapilar/ultraestrutura , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/ultraestrutura , Barreira Hematotesticular/metabolismo , Barreira Hematotesticular/ultraestrutura , Modelos Animais de Doenças , Proteínas Associadas à Distrofina/genética , Epitélio/ultraestrutura , Técnica Indireta de Fluorescência para Anticorpo , Mucosa Gástrica/ultraestrutura , Expressão Gênica , Inativação Gênica , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/patologia , RNA Mensageiro/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/ultraestrutura , Células de Sertoli/ultraestrutura
4.
FASEB J ; 20(6): 610-20, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16581969

RESUMO

Pathological cellular hallmarks of Duchenne muscular dystrophy (DMD) include, among others, abnormal calcium homeostasis. Changes in the expression of specific receptors for extracellular ATP in dystrophic muscle have been recently documented: here, we demonstrate that at the earliest, myoblast stage of developing dystrophic muscle a purinergic dystrophic phenotype arises. In myoblasts of a dystrophin-negative muscle cell line established from the mdx mouse model of DMD but not in normal myoblasts, exposure to extracellular ATP triggered a strong increase in cytoplasmic Ca2+ concentrations. Influx of extracellular Ca2+ was stimulated by ATP and BzATP and inhibited by zinc, Coomassie Brilliant Blue-G, and KN-62, demonstrating activation of P2X7 receptors. Significant expression of P2X4 and P2X7 proteins was immunodetected in dystrophic myoblasts. Therefore, full-length dystrophin appears, surprisingly, to play an important role in myoblasts in controlling responses to ATP. Our results suggest that altered function of P2X receptors may be an important contributor to pathogenic Ca2+ entry in dystrophic mouse muscle and may have implications for the pathogenesis of muscular dystrophies. Treatments aiming at inhibition of specific ATP receptors could be of a potential therapeutic benefit.


Assuntos
Trifosfato de Adenosina/farmacologia , Mioblastos Esqueléticos/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Distrofina/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2/genética , Utrofina/metabolismo
5.
Neuromuscul Disord ; 15(3): 225-36, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15725584

RESUMO

Using a combination of molecular and immunohistochemical methods, we have obtained evidence for a distinctive change in the expression patterns of ATP-gated (P2X) receptor subunits in dystrophic muscle from both Duchenne muscular dystrophy (DMD) patients and the mdx mouse model. In control myofibres there was no staining for any P2X subtype studied here, although P2X1 stained the smooth muscle of the blood vessels and P2X6 nerves and the tunica intima in small arteries. In contrast, P2X1 and P2X6 were co-expressed strongly in small regenerating muscle fibres in the dystrophic muscles, whereas this expression decreased in fully regenerated fibres. Moreover, immunoreactivity for the P2X2 receptor re-appeared in dystrophic muscle, where it co-localised with the Type 1 fibres. There is, thus, a burst of production of several P2X receptor subtypes in regenerating dystrophic muscle, which may have implications for drug targets for this muscle pathology.


Assuntos
Distrofina/deficiência , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Northern Blotting/métodos , Western Blotting/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica/métodos , Masculino , Verde de Metila/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , RNA Mensageiro/biossíntese , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Succinato Desidrogenase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
6.
Eur J Cancer ; 40(14): 2143-51, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15341990

RESUMO

The alpha- and beta- dystroglycan (DG) proteins are involved in epithelial cell development, formation of the basement membrane and maintenance of tissue integrity. Recently, specific changes in the expression patterns of DGs have been described in some cancers. We studied the expression and localisation of alpha- and beta-DG using Western blotting, immunohistochemistry and reverse transcriptase-polymerase chain reaction analyses in samples of normal oral mucosa, oral squamous cell carcinoma (SCC) and cancer cell lines. The alpha- and beta-DG were localised in the basal layers of normal oral mucosa.However, beta-DG expression in cancer tissues showed evidence of aberrant expression, processing and degradation. alpha-DG was altered in all oral cancer samples and cell lines, despite the persistent presence of DG mRNA in cancer cells. Using matrix metalloproteinase (MMP) inhibitors, we determined that beta-DG degradation in carcinoma cell lines can be mediated by MMPs but this process is highly variable, even in cells from the same cancer type. Considering the multifaceted role of DG in epithelial development, it appears that the role of DG degradation in cancer growth and spread, although currently poorly understood, may be important.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias Bucais/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Distroglicanas , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Camundongos , Mucosa Bucal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA