Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(41): eadg5109, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831776

RESUMO

Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.


Assuntos
Neoplasias Pancreáticas , Fatores de Transcrição , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , DNA Topoisomerases Tipo I/metabolismo , Neoplasias Pancreáticas
2.
Mol Oncol ; 17(11): 2396-2414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604687

RESUMO

Although approximately half of all metastatic colorectal cancers (mCRCs) harbour mutations in KRAS or NRAS, hardly any progress has been made regarding targeted treatment for this group over the last few years. Here, we investigated the efficacy of vertical inhibition of the RAS-pathway by targeting epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase kinase (MEK) in patient-derived xenograft (PDX) tumours with primary KRAS mutation. In total, 19 different PDX models comprising 127 tumours were tested. Responses were evaluated according to baseline tumour volume changes and graded as partial response (PR; ≤ - 30%), stable disease (SD; between -30% and +20%) or progressive disease (PD; ≥ + 20%). Vertical inhibition with trametinib and cetuximab induced SD or PR in 74% of analysed models, compared to 24% by monotherapy with trametinib. In cases of PR by vertical inhibition (47%), responses were lasting (as long as day 137), with a low incidence of secondary resistance (SR). Molecular analyses revealed that primary and SR was driven by transcriptional reprogramming activating the RAS pathway in a substantial fraction of tumours. Together, these preclinical data strongly support the translation of this combination therapy into clinical trials for CRC patients.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Xenoenxertos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação/genética
3.
Cancer Metab ; 10(1): 24, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494842

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) lacks effective treatment options beyond chemotherapy. Although molecular subtypes such as classical and QM (quasi-mesenchymal)/basal-like with transcriptome-based distinct signatures have been identified, deduced therapeutic strategies and targets remain elusive. Gene expression data show enrichment of glycolytic genes in the more aggressive and therapy-resistant QM subtype. However, whether the glycolytic transcripts are translated into functional glycolysis that could further be explored for metabolic targeting in QM subtype is still not known. METHODS: We used different patient-derived PDAC model systems (conventional and primary patient-derived cells, patient-derived xenografts (PDX), and patient samples) and performed transcriptional and functional metabolic analysis. These included RNAseq and Illumina HT12 bead array, in vitro Seahorse metabolic flux assays and metabolic drug targeting, and in vivo hyperpolarized [1-13C]pyruvate and [1-13C]lactate magnetic resonance spectroscopy (HP-MRS) in PDAC xenografts. RESULTS: We found that glycolytic metabolic dependencies are not unambiguously functionally exposed in all QM PDACs. Metabolic analysis demonstrated functional metabolic heterogeneity in patient-derived primary cells and less so in conventional cell lines independent of molecular subtype. Importantly, we observed that the glycolytic product lactate is actively imported into the PDAC cells and used in mitochondrial oxidation in both classical and QM PDAC cells, although more actively in the QM cell lines. By using HP-MRS, we were able to noninvasively identify highly glycolytic PDAC xenografts by detecting the last glycolytic enzymatic step and prominent intra-tumoral [1-13C]pyruvate and [1-13C]lactate interconversion in vivo. CONCLUSION: Our study adds functional metabolic phenotyping to transcriptome-based analysis and proposes a functional approach to identify highly glycolytic PDACs as candidates for antimetabolic therapeutic avenues.

4.
Cell Rep ; 37(8): 110056, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818551

RESUMO

Statins are among the most commonly prescribed drugs, and around every fourth person above the age of 40 is on statin medication. Therefore, it is of utmost clinical importance to understand the effect of statins on cancer cell plasticity and its consequences to not only patients with cancer but also patients who are on statins. Here, we find that statins induce a partial epithelial-to-mesenchymal transition (EMT) phenotype in cancer cells of solid tumors. Using a comprehensive STRING network analysis of transcriptome, proteome, and phosphoproteome data combined with multiple mechanistic in vitro and functional in vivo analyses, we demonstrate that statins reduce cellular plasticity by enforcing a mesenchymal-like cell state that increases metastatic seeding ability on one side but reduces the formation of (secondary) tumors on the other due to heterogeneous treatment responses. Taken together, we provide a thorough mechanistic overview of the consequences of statin use for each step of cancer development, progression, and metastasis.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia
5.
Genome Med ; 13(1): 116, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271981

RESUMO

BACKGROUND: The development of secondary resistance (SR) in metastatic colorectal cancer (mCRC) treated with anti-epidermal growth factor receptor (anti-EGFR) antibodies is not fully understood at the molecular level. Here we tested in vivo selection of anti-EGFR SR tumors in CRC patient-derived xenograft (PDX) models as a strategy for a molecular dissection of SR mechanisms. METHODS: We analyzed 21 KRAS, NRAS, BRAF, and PI3K wildtype CRC patient-derived xenograft (PDX) models for their anti-EGFR sensitivity. Furthermore, 31 anti-EGFR SR tumors were generated via chronic in vivo treatment with cetuximab. A multi-omics approach was employed to address molecular primary and secondary resistance mechanisms. Gene set enrichment analyses were used to uncover SR pathways. Targeted therapy of SR PDX models was applied to validate selected SR pathways. RESULTS: In vivo anti-EGFR SR could be established with high efficiency. Chronic anti-EGFR treatment of CRC PDX tumors induced parallel evolution of multiple resistant lesions with independent molecular SR mechanisms. Mutations in driver genes explained SR development in a subgroup of CRC PDX models, only. Transcriptional reprogramming inducing anti-EGFR SR was discovered as a common mechanism in CRC PDX models frequently leading to RAS signaling pathway activation. We identified cAMP and STAT3 signaling activation, as well as paracrine and autocrine signaling via growth factors as novel anti-EGFR secondary resistance mechanisms. Secondary resistant xenograft tumors could successfully be treated by addressing identified transcriptional changes by tailored targeted therapies. CONCLUSIONS: Our study demonstrates that SR PDX tumors provide a unique platform to study molecular SR mechanisms and allow testing of multiple treatments for efficient targeting of SR mechanisms, not possible in the patient. Importantly, it suggests that the development of anti-EGFR tolerant cells via transcriptional reprogramming as a cause of anti-EGFR SR in CRC is likely more prevalent than previously anticipated. It emphasizes the need for analyses of SR tumor tissues at a multi-omics level for a comprehensive molecular understanding of anti-EGFR SR in CRC.


Assuntos
Biomarcadores Tumorais , Reprogramação Celular/genética , Neoplasias Colorretais/etiologia , Resistencia a Medicamentos Antineoplásicos/genética , Transcrição Gênica , Alelos , Animais , Linhagem Celular , Evolução Clonal , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Terapia de Alvo Molecular , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Stem Cells Int ; 2019: 8475389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281387

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with a very poor prognosis. At the same time, its incidence is on the rise, and PDAC is expected to become the second leading cause of cancer-related death by 2030. Despite extensive work on new therapeutic approaches, the median overall survival is only 6-12 months after diagnosis and the 5-year survival is less than 7%. While pancreatic cancer is particularly difficult to treat, patients usually succumb not to the growth of the primary tumor, but to extensive metastasis; therefore, strategies to reduce the migratory and metastatic capacity of pancreatic cancer cells merit close attention. The vast majority of pancreatic cancers harbor RAS mutations. The outstanding relevance of the RAS/MEK/ERK pathway in pancreatic cancer biology has been extensively shown previously. Due to their high dependency on Ras mutations, pancreatic cancers might be particularly sensitive to inhibitors acting downstream of Ras. Herein, we use a genetically engineered mouse model of pancreatic cancer and primary pancreatic cancer cells were derived from this model to demonstrate that small-molecule MEK inhibitors functionally abrogate cancer stem cell populations as demonstrated by reduced sphere and organoid formation capacity. Furthermore, we demonstrate that MEK inhibition suppresses TGFß-induced epithelial-to-mesenchymal transition and migration in vitro and ultimately results in a highly significant reduction in circulating tumor cells in mice.

7.
BMC Cancer ; 13: 490, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144362

RESUMO

BACKGROUND: Chemotherapy for soft tissue sarcomas remains unsatisfactory due to their low chemosensitivity. Even the first line chemotherapeutic agent doxorubicin only yields a response rate of 18-29%. The antibiotic salinomycin, a potassium ionophore, has recently been shown to be a potent compound to deplete chemoresistant cells like cancer stem like cells (CSC) in adenocarcinomas. Here, we evaluated the effect of salinomycin on sarcoma cell lines, whereby salinomycin mono- and combination treatment with doxorubicin regimens were analyzed. METHODS: To evaluate the effect of salinomycin on fibrosarcoma, rhabdomyosarcoma and liposarcoma cell lines, cells were drug exposed in single and combined treatments, respectively. The effects of the corresponding treatments were monitored by cell viability assays, cell cycle analysis, caspase 3/7 and 9 activity assays. Further we analyzed NF-κB activity; p53, p21 and PUMA transcription levels, together with p53 expression and serine 15 phosphorylation. RESULTS: The combination of salinomycin with doxorubicin enhanced caspase activation and increased the sub-G1 fraction. The combined treatment yielded higher NF-κB activity, and p53, p21 and PUMA transcription, whereas the salinomycin monotreatment did not cause any significant changes. CONCLUSIONS: Salinomycin increases the chemosensitivity of sarcoma cell lines - even at sub-lethal concentrations - to the cytostatic drug doxorubicin. These findings support a strategy to decrease the doxorubicin concentration in combination with salinomycin in order to reduce toxic side effects.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Piranos/farmacologia , Sarcoma , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/toxicidade , Sinergismo Farmacológico , Humanos , Piranos/toxicidade , Sarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
8.
Int J Cancer ; 131(2): E86-95, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21953293

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is known for its poor prognosis resulting from being diagnosed at an advanced stage. Accurate early diagnosis and new therapeutic modalities are therefore urgently needed. MicroRNAs (miRNAs), considered a new class of biomarkers and therapeutic targets, may be able to fulfill those needs. Combining tissue microdissection with global miRNA array analyses, cell type-specific miRNA expression profiles were generated for normal pancreatic ductal cells, acinar cells, PDAC cells derived from xenografts and also from macrodissected chronic pancreatitis (CP) tissues. We identified 78 miRNAs differentially expressed between ND and PDAC cells providing new insights into the miRNA-driven pathophysiological mechanisms involved in PDAC development. Having filtered miRNAs which are upregulated in the three pairwise comparisons of PDAC vs. ND, PDAC vs. AZ and PDAC vs. CP, we identified 15 miRNA biomarker candidates including miR-135b. Using relative qRT-PCR to measure miR-135b normalized to miR-24 in 75 FFPE specimens (42 PDAC and 33 CP) covering a broad range of tumor content, we discriminated CP from PDAC with a sensitivity and specificity of 92.9% [95% CI=(80.5, 98.5)] and 93.4% [95% CI=(79.8, 99.3)], respectively. Furthermore, the area under the curve (AUC) value reached of 0.97 was accompanied by positive and negative predictive values of 95% and 91%, respectively. In conclusion, we report pancreatic cell-specific global miRNA profiles, which offer new candidate miRNAs to be exploited for functional studies in PDAC. Furthermore, we provide evidence that miRNAs are well-suited analytes for development of sensitive and specific aid-in-diagnosis tests for PDAC.


Assuntos
Adenocarcinoma/diagnóstico , Biomarcadores Tumorais/análise , Carcinoma Ductal Pancreático/diagnóstico , MicroRNAs/análise , MicroRNAs/genética , Neoplasias Pancreáticas/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/diagnóstico , Pancreatite Crônica/genética
9.
Lab Invest ; 91(10): 1472-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21709669

RESUMO

MicroRNAs (miRNAs: short non-coding RNAs) are emerging as a class of potential novel tumor markers, as their dysregulation is being increasingly reported in various types of cancers. In the present study, we investigated the transcription status of miRNA-148a (miR-148a) in human pancreatic ductal adenocarcinoma (PDAC) and its role in the regulation of the dual specificity protein phosphatase CDC25B. We observed that miR-148a exhibited a significant 4-fold down-regulation in PDAC as opposed to normal pancreatic ductal cells. In addition, we observed that stable lentiviral-mediated overexpression of miR-148a in the pancreatic cancer cell line IMIM-PC2, inhibited tumor cell growth and colony formation. Furthermore, CDC25B was identified as a potential target of miR-148a by in silico analysis using PicTar, Targetscan and miRanda in conjunction with gene ontology analysis. The proposed interaction between miR-148a and the 3' untranslated region (UTR) of CDC25B was verified by in-vitro luciferase assays. We demonstrate that the activity of a luciferase reporter containing the 3'UTR of CDC25B was repressed in the presence of miR-148a mimics, confirming that miR-148a targets the 3'UTR of CDC25B. Finally, CDC25B was down-regulated at the protein level in miR-148a overexpressing IMIM-PC2-cells, and in transiently transfected pancreatic cell lines (as detected by Western blot analysis), as well as in patient tumor samples (as detected by immunohistochemistry). In summary, we identified CDC25B as a novel miR-148a target which may confer a proliferative advantage in PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Sobrevivência Celular/genética , Regulação para Baixo , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Regiões 3' não Traduzidas , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/fisiopatologia , Transfecção , Regulação para Cima , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
10.
BMC Cancer ; 11: 137, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21492476

RESUMO

BACKGROUND: Inactivating mutations of SMAD4 are frequent in metastatic colorectal carcinomas. In previous analyses, we were able to show that restoration of Smad4 expression in Smad4-deficient SW480 human colon carcinoma cells was adequate to suppress tumorigenicity and invasive potential, whereas in vitro cell growth was not affected. Using this cellular model system, we searched for new Smad4 targets comparing nuclear subproteomes derived from Smad4 re-expressing and Smad4 negative SW480 cells. METHODS: High resolution two-dimensional (2D) gel electrophoresis was applied to identify novel Smad4 targets in the nuclear subproteome of Smad4 re-expressing SW480 cells. The identified candidate protein Keratin 23 was further characterized by tandem affinity purification. Immunoprecipitation, subfractionation and immunolocalization studies in combination with RNAi were used to validate the Keratin 23-14-3-3ε interaction. RESULTS: We identified keratins 8 and 18, heat shock proteins 60 and 70, plectin 1, as well as 14-3-3ε and γ as novel proteins present in the KRT23-interacting complex. Co-immunoprecipitation and subfractionation analyses as well as immunolocalization studies in our Smad4-SW480 model cells provided further evidence that KRT23 associates with 14-3-3ε and that Smad4 dependent KRT23 up-regulation induces a shift of the 14-3-3ε protein from a nuclear to a cytoplasmic localization. CONCLUSION: Based on our findings we propose a new regulatory circuitry involving Smad4 dependent up-regulation of KRT23 (directly or indirectly) which in turn modulates the interaction between KRT23 and 14-3-3ε leading to a cytoplasmic sequestration of 14-3-3ε. This cytoplasmic KRT23-14-3-3 interaction may alter the functional status of the well described 14-3-3 scaffold protein, known to regulate key cellular processes, such as signal transduction, cell cycle control, and apoptosis and may thus be a previously unappreciated facet of the Smad4 tumor suppressive circuitry.


Assuntos
Proteínas 14-3-3/metabolismo , Queratinas Tipo I/metabolismo , Proteína Smad4/metabolismo , Proteínas 14-3-3/genética , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Chaperonina 60/metabolismo , Citoplasma/metabolismo , Eletroforese em Gel Bidimensional , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Imunoprecipitação , Queratina-18/metabolismo , Queratina-8/metabolismo , Queratinas Tipo I/genética , Microscopia Confocal , Plectina/metabolismo , Ligação Proteica , Interferência de RNA , Proteína Smad4/genética , Regulação para Cima
11.
Retrovirology ; 6: 86, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19772602

RESUMO

BACKGROUND: Contamination of vertebrate cell lines with animal retroviruses has been documented repeatedly before. Although such viral contaminants can be easily identified with high sensitivity by PCR, it is impossible to screen for all potential contaminants. Therefore, we explored two novel methods to identify viral contaminations in cell lines without prior knowledge of the kind of contaminant. RESULTS: The first hint for the presence of contaminating retroviruses in one of our cell lines was obtained by electron microscopy of exosome-like vesicles released from the supernatants of transfected 293T cells. Random amplification of particle associated RNAs (PAN-PCR) from supernatant of contaminated 293T cells and sequencing of the amplicons revealed several nucleotide sequences showing highest similarity to either murine leukemia virus (MuLV) or squirrel monkey retrovirus (SMRV). Subsequent mass spectrometry analysis confirmed our findings, since we could identify several peptide sequences originating from monkey and murine retroviral proteins. Quantitative PCRs were established for both viruses to test currently cultured cell lines as well as liquid nitrogen frozen cell stocks. Gene fragments for both viruses could be detected in a broad range of permissive cell lines from multiple species. Furthermore, experimental infections of cells negative for these viruses showed that both viruses replicate rapidly to high loads. We decided to further analyze the genomic sequence of the MuLV-like contaminant virus. Surprisingly it was neither identical to MuLV nor to the novel xenotropic MuLV related retrovirus (XMRV) but showed 99% identity to a synthetic retrovirus which was engineered in the 1980s. CONCLUSION: The high degree of nucleotide identity suggests unintended spread of a biosafety level 2 recombinant virus, which could also affect the risk assessment of gene-modified organisms released from contaminated cell cultures. The study further indicates that both mass spectrometry and PAN-PCR are powerful methods to identify viral contaminations in cell lines without prior knowledge of the kind of contaminant. Both methods might be useful tools for testing cell lines before using them for critical purposes.


Assuntos
Betaretrovirus/crescimento & desenvolvimento , Betaretrovirus/isolamento & purificação , Linhagem Celular/virologia , Vírus da Leucemia Murina/crescimento & desenvolvimento , Vírus da Leucemia Murina/isolamento & purificação , Contenção de Riscos Biológicos , Humanos , Espectrometria de Massas/métodos , Microscopia Eletrônica/métodos , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA