Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Case Rep Genet ; 2024: 6475425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756740

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein-Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.

2.
Sci Rep ; 13(1): 8856, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258605

RESUMO

The cellular and molecular underpinnings of Wallerian degeneration have been robustly explored in laboratory models of successful nerve regeneration. In contrast, there is limited interrogation of failed regeneration, which is the challenge facing clinical practice. Specifically, we lack insight on the pathophysiologic mechanisms that lead to the formation of neuromas-in-continuity (NIC). To address this knowledge gap, we have developed and validated a novel basic science model of rapid-stretch nerve injury, which provides a biofidelic injury with NIC development and incomplete neurologic recovery. In this study, we applied next-generation RNA sequencing to elucidate the temporal transcriptional landscape of pathophysiologic nerve regeneration. To corroborate genetic analysis, nerves were subject to immunofluorescent staining for transcripts representative of the prominent biological pathways identified. Pathophysiologic nerve regeneration produces substantially altered genetic profiles both temporally and in the mature neuroma microenvironment, in contrast to the coordinated genetic signatures of Wallerian degeneration and successful regeneration. To our knowledge, this study presents as the first transcriptional study of NIC pathophysiology and has identified cellular death, fibrosis, neurodegeneration, metabolism, and unresolved inflammatory signatures that diverge from pathways elaborated by traditional models of successful nerve regeneration.


Assuntos
Tecido Nervoso , Neuroma , Traumatismos dos Nervos Periféricos , Humanos , Transcriptoma , Degeneração Walleriana/metabolismo , Regeneração Nervosa/genética , Tecido Nervoso/metabolismo , Neuroma/patologia , Análise de Sequência de RNA , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Microambiente Tumoral
3.
Anesth Analg ; 132(1): e1-e5, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169415

RESUMO

Opioids may influence inflammation. We compared genes associated with pain and inflammation in patients who consumed opioids (3-120 mg of oral morphine equivalents per day) with those who did not for differential expression. White blood cells were assayed in 20 patients presenting for total lower extremity joint replacement. We focused on messenger ribonucleic acid expression of complement proteins. We report that the expression of a complement inhibitor, complement 4 binding protein A, was reduced, and the expression of a complement activator, complement factor D, was increased in opioid-consuming patients. We conclude that opioid consumption may influence expression of complement activators and inhibitors.


Assuntos
Analgésicos Opioides/administração & dosagem , Proteína de Ligação ao Complemento C4b/biossíntese , Procedimentos Cirúrgicos Eletivos/tendências , Proteína de Ligação ao Complemento C4b/antagonistas & inibidores , Proteína de Ligação ao Complemento C4b/genética , Proteínas do Sistema Complemento , Feminino , Expressão Gênica , Humanos , Masculino , Dor Pós-Operatória/sangue , Dor Pós-Operatória/genética , Dor Pós-Operatória/prevenção & controle
4.
Brain Behav Immun ; 62: 87-99, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28216087

RESUMO

Post exertion malaise is one of the most debilitating aspects of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, yet the neurobiological consequences are largely unexplored. The objective of the study was to determine the neural consequences of acute exercise using functional brain imaging. Fifteen female Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients and 15 healthy female controls completed 30min of submaximal exercise (70% of peak heart rate) on a cycle ergometer. Symptom assessments (e.g. fatigue, pain, mood) and brain imaging data were collected one week prior to and 24h following exercise. Functional brain images were obtained during performance of: 1) a fatiguing cognitive task - the Paced Auditory Serial Addition Task, 2) a non-fatiguing cognitive task - simple number recognition, and 3) a non-fatiguing motor task - finger tapping. Symptom and exercise data were analyzed using independent samples t-tests. Cognitive performance data were analyzed using mixed-model analysis of variance with repeated measures. Brain responses to fatiguing and non-fatiguing tasks were analyzed using linear mixed effects with cluster-wise (101-voxels) alpha of 0.05. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients reported large symptom changes compared to controls (effect size ≥0.8, p<0.05). Patients and controls had similar physiological responses to exercise (p>0.05). However, patients exercised at significantly lower Watts and reported greater exertion and leg muscle pain (p<0.05). For cognitive performance, a significant Group by Time interaction (p<0.05), demonstrated pre- to post-exercise improvements for controls and worsening for patients. Brain responses to finger tapping did not differ between groups at either time point. During number recognition, controls exhibited greater brain activity (p<0.05) in the posterior cingulate cortex, but only for the pre-exercise scan. For the Paced Serial Auditory Addition Task, there was a significant Group by Time interaction (p<0.05) with patients exhibiting increased brain activity from pre- to post-exercise compared to controls bilaterally for inferior and superior parietal and cingulate cortices. Changes in brain activity were significantly related to symptoms for patients (p<0.05). Acute exercise exacerbated symptoms, impaired cognitive performance and affected brain function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients. These converging results, linking symptom exacerbation with brain function, provide objective evidence of the detrimental neurophysiological effects of post-exertion malaise.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Exercício Físico/fisiologia , Síndrome de Fadiga Crônica/psicologia , Fadiga/psicologia , Esforço Físico/fisiologia , Adulto , Exercício Físico/psicologia , Fadiga/fisiopatologia , Síndrome de Fadiga Crônica/fisiopatologia , Feminino , Humanos , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tempo de Reação/fisiologia
5.
Exp Physiol ; 102(1): 48-69, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27730694

RESUMO

NEW FINDINGS: What is the central question of this study? Does improved metabolic health and insulin sensitivity following a weight-loss and fitness intervention in sedentary, obese women alter exercise-associated fuel metabolism and incomplete mitochondrial fatty acid oxidation (FAO), as tracked by blood acylcarnitine patterns? What is the main finding and its importance? Despite improved fitness and blood sugar control, indices of incomplete mitochondrial FAO increased in a similar manner in response to a fixed load acute exercise bout; this indicates that intramitochondrial muscle FAO is inherently inefficient and is tethered directly to ATP turnover. With insulin resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives [markers of incomplete long-chain fatty acid oxidation (FAO)]. We reasoned that incomplete FAO in muscle would be ameliorated concurrent with improved insulin sensitivity and fitness following a ∼14 week training and weight-loss intervention in obese, sedentary, insulin-resistant women. Contrary to this hypothesis, overnight-fasted and exercise-induced plasma C4-C14 acylcarnitines did not differ between pre- and postintervention phases. These metabolites all increased robustly with exercise (∼45% of pre-intervention peak oxygen consumption) and decreased during a 20 min cool-down. This supports the idea that, regardless of insulin sensitivity and fitness, intramitochondrial muscle ß-oxidation and attendant incomplete FAO are closely tethered to absolute ATP turnover rate. Acute exercise also led to branched-chain amino acid acylcarnitine derivative patterns suggestive of rapid and transient diminution of branched-chain amino acid flux through the mitochondrial branched-chain ketoacid dehydrogenase complex. We confirmed our prior novel observation that a weight-loss/fitness intervention alters plasma xenometabolites [i.e. cis-3,4-methylene-heptanoylcarnitine and γ-butyrobetaine (a co-metabolite possibly derived in part from gut bacteria)], suggesting that host metabolic health regulated gut microbe metabolism. Finally, we considered whether acylcarnitine metabolites signal to muscle-innervating afferents; palmitoylcarnitine at concentrations as low as 1-10 µm activated a subset (∼2.5-5%) of these neurons ex vivo. This supports the hypothesis that in addition to tracking exercise-associated shifts in fuel metabolism, muscle acylcarnitines act as signals of exertion to short-loop somatosensory-motor circuits or to the brain.


Assuntos
Biomarcadores/metabolismo , Carnitina/análogos & derivados , Exercício Físico/fisiologia , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Trifosfato de Adenosina/metabolismo , Adulto , Aminoácidos de Cadeia Ramificada/metabolismo , Carnitina/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Resistência à Insulina/fisiologia , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Redução de Peso/fisiologia
6.
J Pain ; 17(8): 889-903, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27063783

RESUMO

UNLABELLED: Many derivatives of bisphosphonates, which are inhibitors of bone resorption, have been developed as promising agents for painful pathologies in patients with bone resorption-related diseases. The mechanism for pain relief by bisphosphonates remains uncertain. Studies have reported that bisphosphonates could reduce central neurochemical changes involved in the generation and maintenance of bone cancer pain. In this study, we hypothesized that bisphosphonates would inhibit spinal microglial activation and prevent the development of hyperalgesia caused by peripheral tissue injury. We investigated the effects of alendronate (a nitrogen-containing bisphosphonate) on the development of neuropathic pain and its role in modulating microglial activation in vivo and in vitro. Intrathecal and intraperitoneal administration of alendronate relieved neuropathic pain behaviors induced by chronic constriction sciatic nerve injury. Alendronate also significantly attenuated spinal microglial activation and p38 mitogen-activated protein kinase (MAPK) phosphorylation without affecting astrocytes. In vitro, alendronate downregulated phosphorylated p38 and phosphorylated extracellular signal regulated kinase expression in lipopolysaccharide-stimulated primary microglia within 1 hour, and pretreatment with alendronate for 12 and 24 hours decreased the expression of inflammatory cytokines (tumor necrosis factor α, and interleukins 1ß and 6). These findings indicate that alendronate could effectively relieve chronic constriction sciatic nerve injury-induced neuropathic pain by at least partially inhibiting the activation of spinal microglia and the p38 MAPK signaling pathway. PERSPECTIVE: Alendronate could relieve neuropathic pain behaviors in animals by inhibiting the activation of spinal cord microglia and the p38 MAPK cell signaling pathway. Therapeutic applications of alendronate may be extended beyond bone metabolism-related disease.


Assuntos
Alendronato/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Microglia/efeitos dos fármacos , Ciática/tratamento farmacológico , Ciática/patologia , Medula Espinal/patologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Colecistocinina/análogos & derivados , Colecistocinina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Injeções Espinhais , Masculino , Proteínas dos Microfilamentos/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Arthritis Care Res (Hoboken) ; 68(1): 132-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26097208

RESUMO

OBJECTIVE: To determine if independent candidate genes can be grouped into meaningful biologic factors, and whether these factors are associated with the diagnosis of chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FMS), while controlling for comorbid depression, sex, and age. METHODS: We included leukocyte messenger RNA gene expression from a total of 261 individuals, including healthy controls (n = 61), patients with FMS only (n = 15), with CFS only (n = 33), with comorbid CFS and FMS (n = 79), and with medication-resistant (n = 42) or medication-responsive (n = 31) depression. We used exploratory factor analysis (EFA) on 34 candidate genes to determine factor scores and regression analysis to examine whether these factors were associated with specific diagnoses. RESULTS: EFA resulted in 4 independent factors with minimal overlap of genes between factors, explaining 51% of the variance. We labeled these factors by function as 1) purinergic and cellular modulators, 2) neuronal growth and immune function, 3) nociception and stress mediators, and 4) energy and mitochondrial function. Regression analysis predicting these biologic factors using FMS, CFS, depression severity, age, and sex revealed that greater expression in factors 1 and 3 was positively associated with CFS and negatively associated with depression severity (Quick Inventory for Depression Symptomatology score), but not associated with FMS. CONCLUSION: Expression of candidate genes can be grouped into meaningful clusters, and CFS and depression are associated with the same 2 clusters, but in opposite directions, when controlling for comorbid FMS. Given high comorbid disease and interrelationships between biomarkers, EFA may help determine patient subgroups in this population based on gene expression.


Assuntos
Depressão/genética , Síndrome de Fadiga Crônica/genética , Fibromialgia/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Estudos Transversais , Depressão/diagnóstico , Depressão/fisiopatologia , Depressão/psicologia , Análise Fatorial , Síndrome de Fadiga Crônica/diagnóstico , Síndrome de Fadiga Crônica/fisiopatologia , Síndrome de Fadiga Crônica/psicologia , Feminino , Fibromialgia/diagnóstico , Fibromialgia/fisiopatologia , Fibromialgia/psicologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Leucócitos/química , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Mensageiro/genética , Adulto Jovem
8.
J Neurosci ; 35(42): 14086-102, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490852

RESUMO

The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aß-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aß-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aß-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aß-LTMRs removes dorsal horn inhibition that otherwise prevents Aß-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aß-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions. SIGNIFICANCE STATEMENT: The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mecanorreceptores/fisiologia , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Dor/fisiopatologia , Tato/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Dependovirus/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Mecanorreceptores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Dor/etiologia , Doenças do Sistema Nervoso Periférico/complicações , Ratos , Ratos Sprague-Dawley , Privação Sensorial/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/inervação
9.
Pain Res Treat ; 2015: 136409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27026828

RESUMO

Pregabalin, an approved treatment for fibromyalgia (FM), has been shown to decrease sympathetic nervous system (SNS) activity and inhibit sympathetically maintained pain, but its effects on exercise responses have not been reported. Methods. Using a randomized double-blind crossover design, we assessed the effect of 5 weeks of pregabalin (versus placebo) on acute cardiovascular and subjective responses to moderate exercise in 19 FM patients. Blood pressure (BP), heart rate (HR), and ratings of perceived exertion (RPE) during exercise and ratings of pain, physical fatigue, and mental fatigue before, during, and for 48 hours after exercise were compared in patients on pregabalin versus placebo and also versus 18 healthy controls. Results. On placebo, exercise RPE and BP were significantly higher in FM patients than controls (p < 0.04). Pregabalin responders (n = 12, defined by patient satisfaction and symptom changes) had significantly lower exercise BP, HR, and RPE on pregabalin versus placebo (p < 0.03) and no longer differed from controls (p > 0.26). Cardiovascular responses of nonresponders (n = 7) were not altered by pregabalin. In responders, pregabalin improved ratings of fatigue and pain (p < 0.04), but negative effects on pain and fatigue were seen in nonresponders. Conclusions. These preliminary findings suggest that pregabalin may normalize cardiovascular and subjective responses to exercise in many FM patients.

11.
Exp Physiol ; 99(2): 368-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24142455

RESUMO

NEW FINDINGS: What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Láctico/metabolismo , Fadiga Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Dor/fisiopatologia , Sensação/fisiologia , Adulto , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Dor/metabolismo , Resistência Física/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia
12.
Psychoneuroendocrinology ; 38(12): 2983-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24054763

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) often worsens fatigue in patients with prostate cancer, producing symptoms similar to chronic fatigue syndrome (CFS). Comparing expression (mRNA) of many fatigue-related genes in patients with ADT-treated prostate cancer versus with CFS versus healthy controls, and correlating mRNA with fatigue severity may clarify the differing pathways underlying fatigue in these conditions. METHODS: Quantitative real-time PCR was performed on leukocytes from 30 fatigued, ADT-treated prostate cancer patients (PCF), 39 patients with CFS and 22 controls aged 40-79, together with ratings of fatigue and pain severity. 46 genes from these pathways were included: (1) adrenergic/monoamine/neuropeptides, (2) immune, (3) metabolite-detecting, (4) mitochondrial/energy, (5) transcription factors. RESULTS: PCF patients showed higher expression than controls or CFS of 2 immune transcription genes (NR3C1 and TLR4), chemokine CXCR4, and mitochondrial gene SOD2. They showed lower expression of 2 vasodilation-related genes (ADRB2 and VIPR2), 2 cytokines (TNF and LTA), and 2 metabolite-detecting receptors (ASIC3 and P2RX7). CFS patients showed higher P2RX7 and lower HSPA2 versus controls and PCF. Correlations with fatigue severity were similar in PCF and CFS for only DBI, the GABA-A receptor modulator (r=-0.50, p<0.005 and r=-0.34, p<0.05). Purinergic P2RY1 was correlated only with PCF fatigue and pain severity (r=+0.43 and +0.59, p=0.025 and p=0.001). CONCLUSIONS: PCF patients differed from controls and CFS in mean expression of 10 genes from all 5 pathways. Correlations with fatigue severity implicated DBI for both patient groups and P2RY1 for PCF only. These pathways may provide new targets for interventions to reduce fatigue.


Assuntos
Síndrome de Fadiga Crônica/genética , Fadiga/genética , Expressão Gênica/fisiologia , Leucócitos/metabolismo , Neoplasias da Próstata/genética , Adulto , Idoso , Análise por Conglomerados , DNA Complementar/biossíntese , DNA Complementar/genética , Depressão/psicologia , Exercício Físico/fisiologia , Fadiga/metabolismo , Fadiga/psicologia , Síndrome de Fadiga Crônica/metabolismo , Síndrome de Fadiga Crônica/psicologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Dor/psicologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/psicologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Análise de Regressão , Sono/fisiologia
13.
PLoS One ; 8(4): e61266, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613824

RESUMO

We previously demonstrated safe and reliable gene transfer to the dorsal root ganglion (DRG) using a direct microinjection procedure to deliver recombinant adeno-associated virus (AAV) vector. In this study, we proceed to compare the in vivo transduction patterns of self-complementary (sc) AAV6 and AAV8 in the peripheral sensory pathway. A single, direct microinjection of either AAV6 or AAV8 expressing EGFP, at the adjusted titer of 2×10(9) viral particle per DRG, into the lumbar (L) 4 and L5 DRGs of adult rats resulted in efficient EGFP expression (48±20% for AAV6 and 25±4% for AAV8, mean ± SD) selectively in sensory neurons and their axonal projections 3 weeks after injection, which remained stable for up to 3 months. AAV6 efficiently transfers EGFP to all neuronal size groups without differential neurotropism, while AAV8 predominantly targets large-sized neurons. Neurons transduced with AAV6 penetrate into the spinal dorsal horn (DH) and terminate predominantly in superficial DH laminae, as well as in the dorsal columns and deeper laminae III-V. Only few AAV8-transduced afferents were evident in the superficial laminae, and spinal EGFP was mostly present in the deeper dorsal horn (lamina III-V) and dorsal columns, with substantial projections to the ventral horn. AAV6-mediated EGFP-positive nerve fibers were widely observed in the medial plantar skin of ipsilateral hindpaws. No apparent inflammation, tissue damage, or major pain behaviors were observed for either AAV serotype. Taken together, both AAV6 and AAV8 are efficient and safe vectors for transgene delivery to primary sensory neurons, but they exhibit distinct functional features. Intraganglionic delivery of AAV6 is more uniform and efficient compared to AAV8 in gene transfer to peripheral sensory neurons and their axonal processes.


Assuntos
Dependovirus/genética , Gânglios Espinais/metabolismo , Vetores Genéticos/genética , Animais , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Masculino , Ratos , Células Receptoras Sensoriais/metabolismo
14.
Chem Res Toxicol ; 26(5): 750-8, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23541125

RESUMO

Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM < 2.5 µm) of wood smoke were the most potent TRPA1 agonists and several chemical constituents of wood smoke particulate, 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid, were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pretreated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans.


Assuntos
Pulmão/citologia , Pulmão/efeitos dos fármacos , Proteínas do Tecido Nervoso/agonistas , Material Particulado/farmacologia , Fumaça/efeitos adversos , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/metabolismo , Madeira/química , Acetanilidas/farmacologia , Aldeídos/química , Aldeídos/farmacologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Linhagem Celular Tumoral , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Células HEK293 , Humanos , Pulmão/metabolismo , Camundongos , Modelos Biológicos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Material Particulado/química , Fenalenos/química , Fenalenos/farmacologia , Pinus/química , Prosopis/química , Purinas/farmacologia , Propriedades de Superfície , Canal de Cátion TRPA1 , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/biossíntese , Canais de Potencial de Receptor Transitório/genética , Nervo Trigêmeo/citologia
15.
Proc Natl Acad Sci U S A ; 109(5): 1388-95, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307590

RESUMO

We describe a functional profiling strategy to identify and characterize subtypes of neurons present in a peripheral ganglion, which should be extendable to neurons in the CNS. In this study, dissociated dorsal-root ganglion neurons from mice were exposed to various pharmacological agents (challenge compounds), while at the same time the individual responses of >100 neurons were simultaneously monitored by calcium imaging. Each challenge compound elicited responses in only a subset of dorsal-root ganglion neurons. Two general types of challenge compounds were used: agonists of receptors (ionotropic and metabotropic) that alter cytoplasmic calcium concentration (receptor-agonist challenges) and compounds that affect voltage-gated ion channels (membrane-potential challenges). Notably, among the latter are K-channel antagonists, which elicited unexpectedly diverse types of calcium responses in different cells (i.e., phenotypes). We used various challenge compounds to identify several putative neuronal subtypes on the basis of their shared and/or divergent functional, phenotypic profiles. Our results indicate that multiple receptor-agonist and membrane-potential challenges may be applied to a neuronal population to identify, characterize, and discriminate among neuronal subtypes. This experimental approach can uncover constellations of plasma membrane macromolecules that are functionally coupled to confer a specific phenotypic profile on each neuronal subtype. This experimental platform has the potential to bridge a gap between systems and molecular neuroscience with a cellular-focused neuropharmacology, ultimately leading to the identification and functional characterization of all neuronal subtypes at a given locus in the nervous system.


Assuntos
Neurônios/fisiologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/fisiologia , Camundongos , Venenos de Moluscos/química , Neurônios/efeitos dos fármacos , Neurônios/patologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia
16.
Psychosom Med ; 74(1): 46-54, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22210239

RESUMO

OBJECTIVE: Chronic fatigue syndrome (CFS) and multiple sclerosis (MS) are characterized by debilitating fatigue, yet evaluation of this symptom is subjective. We examined metabolite-detecting, adrenergic, and immune gene expression (messenger ribonucleic acid [mRNA]) in patients with CFS (n = 22) versus patients with MS (n = 20) versus healthy controls (n = 23) and determined their relationship to fatigue and pain before and after exercise. METHODS: Blood samples and fatigue and pain ratings were obtained at baseline and 0.5, 8, 24, and 48 hours after sustained moderate exercise. Leukocyte mRNA of four metabolite-detecting receptors (acid-sensing ion channel 3, purinergic type 2X4 and 2X5 receptors, and transient receptor potential vanilloid type 1) and four adrenergic (α-2a, ß-1, and ß-2 receptors and catechol-O-methyltransferase) and five immune markers (CD14, toll-like receptor 4 [TLR4], interleukin [IL] 6, IL-10, and lymphotoxin α) was examined using quantitative polymerase chain reaction. RESULTS: Patients with CFS had greater postexercise increases in fatigue and pain (10-29 points above baseline, p < .001) and greater mRNA increases in purinergic type 2X4 receptor, transient receptor potential vanilloid type 1, CD14, and all adrenergic receptors than controls (mean ± standard error = 1.3 ± 0.14- to 3.4 ± 0.90-fold increase above baseline, p = .04-.005). Patients with CFS with comorbid fibromyalgia (n = 18) also showed greater increases in acid-sensing ion channel 3 and purinergic type 2X5 receptors (p < .05). Patients with MS had greater postexercise increases than controls in ß-1 and ß-2 adrenergic receptor expressions (1.4 ± 0.27- and 1.3 ± 0.06-fold increases, respectively, p = .02 and p < .001) and greater decreases in TLR4 (p = .02). In MS, IL-10 and TLR4 decreases correlated with higher fatigue scores. CONCLUSIONS: Postexercise mRNA increases in metabolite-detecting receptors were unique to patients with CFS, whereas both patients with MS and patients with CFS showed abnormal increases in adrenergic receptors. Among patients with MS, greater fatigue was correlated with blunted immune marker expression.


Assuntos
Síndrome de Fadiga Crônica/fisiopatologia , Leucócitos/metabolismo , Esclerose Múltipla/fisiopatologia , Adrenérgicos/metabolismo , Adulto , Análise de Variância , Biomarcadores/metabolismo , Estudos de Casos e Controles , Suscetibilidade a Doenças , Teste de Esforço , Tolerância ao Exercício/fisiologia , Fadiga/genética , Fadiga/fisiopatologia , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/imunologia , Síndrome de Fadiga Crônica/metabolismo , Feminino , Fibromialgia/genética , Fibromialgia/imunologia , Fibromialgia/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interação Gene-Ambiente , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Dor/genética , Dor/fisiopatologia , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo , Receptores Purinérgicos/genética , Receptores Purinérgicos/metabolismo , Índice de Gravidade de Doença , Canais de Cátion TRPV , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
17.
Pain Res Treat ; 2012: 427869, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22110941

RESUMO

In complex multisymptom disorders like fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information. This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels. The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT) genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2), and the purinergic 2X4 (P2X4) ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed.

18.
J Virol ; 85(14): 7195-202, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21543496

RESUMO

Chronic fatigue syndrome (CFS) is a multisystem disorder characterized by prolonged and severe fatigue that is not relieved by rest. Attempts to treat CFS have been largely ineffective primarily because the etiology of the disorder is unknown. Recently, CFS has been associated with xenotropic murine leukemia virus-related virus (XMRV) as well as other murine leukemia virus (MLV)-related viruses, though not all studies have found these associations. We collected blood samples from 100 CFS patients and 200 self-reported healthy volunteers from the same geographical area. We analyzed these in a blind manner using molecular, serological, and viral replication assays. We also analyzed samples from patients in the original study that reported XMRV in CFS patients. We did not find XMRV or related MLVs either as viral sequences or infectious viruses, nor did we find antibodies to these viruses in any of the patient samples, including those from the original study. We show that at least some of the discrepancy with previous studies is due to the presence of trace amounts of mouse DNA in the Taq polymerase enzymes used in these previous studies. Our findings do not support an association between CFS and MLV-related viruses, including XMRV, and the off-label use of antiretrovirals for the treatment of CFS does not seem justified at present.


Assuntos
Síndrome de Fadiga Crônica/virologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/isolamento & purificação , Adulto , Sequência de Bases , Western Blotting , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Reação em Cadeia da Polimerase , Replicação Viral , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/fisiologia
19.
Psychophysiology ; 47(4): 615-24, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20230500

RESUMO

Chronic fatigue syndrome (CFS) patients often report symptom flare (SF) for >24 h after moderate exercise (post-ex). We hypothesized that SF is linked to increases in circulating cytokines and CD40 Ligand (CD40L). In 19 CFS patients and 17 controls, mental and physical fatigue and pain symptom ratings were obtained together with serum for 11 cytokines and CD40L before and at 0.5, 8, 24, and 48 h post-ex. Before exercise, CFS had lower CD40L (p<.05) but similar cytokines versus controls. In subgroups based on SF at 48 h, high SF patients (n=11) increased in IL-1beta, IL-12, IL-6, IL-8, IL-10, and IL-13 (p<.05) 8 h post-ex. Low SF patients (n=8) showed post-ex decreases in IL-10, IL-13, and CD40L, and controls decreased in IL-10, CD40L, and TNFalpha (p<.05). Thus, in CFS, cytokine activity may vary directly with SF, which may explain prior inconsistent findings.


Assuntos
Citocinas/metabolismo , Exercício Físico/fisiologia , Síndrome de Fadiga Crônica/metabolismo , Adulto , Idoso , Biomarcadores , Contagem de Células Sanguíneas , Ligante de CD40/metabolismo , Síndrome de Fadiga Crônica/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/etiologia , Medição da Dor , Adulto Jovem
20.
J Pain ; 10(10): 1099-112, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19647494

RESUMO

UNLABELLED: Chronic fatigue syndrome (CFS) is characterized by debilitating fatigue, often accompanied by widespread muscle pain that meets criteria for fibromyalgia syndrome (FMS). Symptoms become markedly worse after exercise. Previous studies implicated dysregulation of the sympathetic nervous system (SNS), and immune system (IS) in CFS and FMS. We recently demonstrated that acid sensing ion channel (probably ASIC3), purinergic type 2X receptors (probably P2X4 and P2X5) and the transient receptor potential vanilloid type 1 (TRPV1) are molecular receptors in mouse sensory neurons detecting metabolites that cause acute muscle pain and possibly muscle fatigue. These molecular receptors are found on human leukocytes along with SNS and IS genes. Real-time, quantitative PCR showed that 19 CFS patients had lower expression of beta-2 adrenergic receptors but otherwise did not differ from 16 control subjects before exercise. After a sustained moderate exercise test, CFS patients showed greater increases than control subjects in gene expression for metabolite detecting receptors ASIC3, P2X4, and P2X5, for SNS receptors alpha-2A, beta-1, beta-2, and COMT and IS genes for IL10 and TLR4 lasting from 0.5 to 48 hours (P < .05). These increases were also seen in the CFS subgroup with comorbid FMS and were highly correlated with symptoms of physical fatigue, mental fatigue, and pain. These new findings suggest dysregulation of metabolite detecting receptors as well as SNS and IS in CFS and CFS-FMS. PERSPECTIVE: Muscle fatigue and pain are major symptoms of CFS. After moderate exercise, CFS and CFS-FMS patients show enhanced gene expression for receptors detecting muscle metabolites and for SNS and IS, which correlate with these symptoms. These findings suggest possible new causes, points for intervention, and objective biomarkers for these disorders.


Assuntos
Tolerância ao Exercício/fisiologia , Síndrome de Fadiga Crônica/fisiopatologia , Regulação da Expressão Gênica/genética , Sistema Imunitário/fisiopatologia , Receptores de Superfície Celular/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Canais Iônicos Sensíveis a Ácido , Adulto , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Teste de Esforço , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/imunologia , Feminino , Fibromialgia/genética , Fibromialgia/imunologia , Fibromialgia/fisiopatologia , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença/genética , Humanos , Sistema Imunitário/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Superfície Celular/genética , Receptores Purinérgicos/genética , Receptores Purinérgicos/metabolismo , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Sistema Nervoso Simpático/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA