Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526660

RESUMO

Human mitochondria contain their own genome, mitochondrial DNA, that is expressed in the mitochondrial matrix. This genome encodes 13 vital polypeptides that are components of the multisubunit complexes that couple oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane that houses these complexes comprises the inner boundary membrane that runs parallel to the outer membrane, infoldings that form the cristae membranes, and the cristae junctions that separate the two. It is in these cristae membranes that the OXPHOS complexes have been shown to reside in various species. The majority of the OXPHOS subunits are nuclear-encoded and must therefore be imported from the cytosol through the outer membrane at contact sites with the inner boundary membrane. As the mitochondrially encoded components are also integral members of these complexes, where does protein synthesis occur? As transcription, mRNA processing, maturation, and at least part of the mitoribosome assembly process occur at the nucleoid and the spatially juxtaposed mitochondrial RNA granules, is protein synthesis also performed at the RNA granules close to these entities, or does it occur distal to these sites? We have adapted a click chemistry-based method coupled with stimulated emission depletion nanoscopy to address these questions. We report that, in human cells in culture, within the limits of our methodology, the majority of mitochondrial protein synthesis is detected at the cristae membranes and is spatially separated from the sites of RNA processing and maturation.


Assuntos
Compartimento Celular , Imageamento Tridimensional , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Alcinos , Células Cultivadas , DNA Mitocondrial/genética , Glicina/análogos & derivados , Humanos , Cinética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , Transdução de Sinais
2.
FEBS J ; 288(2): 437-451, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32329962

RESUMO

In mammalian mitochondria, messenger RNA is processed and matured from large primary transcripts in structures known as RNA granules. The identity of the factors and process transferring the matured mRNA to the mitoribosome for translation is unclear. Nascent mature transcripts are believed to associate initially with the small mitoribosomal subunit prior to recruitment of the large subunit to form the translationally active monosome. When the small subunit fails to assemble, however, the stability of mt-mRNA is only marginally affected, and under these conditions, the LRPPRC/SLIRP RNA-binding complex has been implicated in maintaining mt-mRNA stability. Here, we exploit the activity of a bacterial ribotoxin, VapC20, to show that in the absence of the large mitoribosomal subunit, mt-mRNA species are selectively lost. Further, if the small subunit is also depleted, the mt-mRNA levels are recovered. As a consequence of these data, we suggest a natural pathway for loading processed mt-mRNA onto the mitoribosome.


Assuntos
Toxinas Bacterianas/genética , Mitocôndrias/genética , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Ribonucleases/genética , Toxinas Bacterianas/metabolismo , Sequência de Bases , Transporte Biológico , Engenharia Celular/métodos , Linhagem Celular , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neurospora crassa/química , Neurospora crassa/metabolismo , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/metabolismo
3.
Methods Mol Biol ; 2192: 159-181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230773

RESUMO

Human mitochondria contain their own DNA (mtDNA) that encodes 13 proteins all of which are core subunits of oxidative phosphorylation (OXPHOS) complexes. To form functional complexes, these 13 components need to be correctly assembled with approximately 70 nuclear-encoded subunits that are imported following synthesis in the cytosol. How this complicated coordinated translation and assembly is choreographed is still not clear. Methods are being developed to determine whether all members of a particular complex are translated in close proximity, whether protein synthesis is clustered in submitochondrial factories, whether these align with incoming polypeptides, and if there is evidence for co-translational translation that is regulated and limited by the interaction of the incoming proteins with synthesis of their mtDNA-encoded partners. Two methods are described in this chapter to visualize the distribution of mitochondrial ribosomal RNAs in conjunction with newly synthesized mitochondrial proteins. The first combines RNA Fluorescent In Situ Hybridization (FISH) and super-resolution immunocytochemistry to pinpoint mitochondrial ribosomal RNA. The second localizes nascent translation within the mitochondrial network through non-canonical amino acid labeling, click chemistry and fluorescent microscopy.


Assuntos
Química Click/métodos , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , RNA Ribossômico/metabolismo , Aminoácidos/química , Linhagem Celular Tumoral , DNA Mitocondrial/genética , Humanos , Microscopia de Fluorescência/métodos , Fosforilação Oxidativa , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo
4.
J Cell Sci ; 133(1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896602

RESUMO

In the canonical process of translation, newly completed proteins escape from the ribosome following cleavage of the ester bond that anchors the polypeptide to the P-site tRNA, after which the ribosome can be recycled to initiate a new round of translation. Not all protein synthesis runs to completion as various factors can impede the progression of ribosomes. Rescuing of stalled ribosomes in mammalian mitochondria, however, does not share the same mechanisms that many bacteria use. The classic method for rescuing bacterial ribosomes is trans-translation. The key components of this system are absent from mammalian mitochondria; however, four members of a translation termination factor family are present, with some evidence of homology to members of a bacterial back-up rescue system. To date, there is no definitive demonstration of any other member of this family functioning in mitoribosome rescue. Here, we provide an overview of the processes and key players of canonical translation termination in both bacteria and mammalian mitochondria, followed by a perspective of the bacterial systems used to rescue stalled ribosomes. We highlight any similarities or differences with the mitochondrial translation release factors, and suggest potential roles for these proteins in ribosome rescue in mammalian mitochondria.


Assuntos
Bactérias/metabolismo , Ribossomos Mitocondriais/metabolismo , Animais
5.
Cell Div ; 14: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249607

RESUMO

BACKGROUND: Drugs such as taxanes, epothilones, and vinca alkaloids are widely used in the treatment of breast, ovarian, and lung cancers but come with major side effects such as neuropathy and loss of neutrophils and as single agents have a lack of efficacy. M2I-1 (MAD2 inhibitor-1) has been shown to disrupt the CDC20-MAD2 interaction, and consequently, the assembly of the mitotic checkpoint complex (MCC). RESULTS: We report here that M2I-1 can significantly increase the sensitivity of several cancer cell lines to anti-mitotic drugs, with cell death occurring after a prolonged mitotic arrest. In the presence of nocodazole or taxol combined with M2I-1 cell death is triggered by the premature degradation of Cyclin B1, the perturbation of the microtubule network, and an increase in the level of the pro-apoptotic protein MCL-1s combined with a marginal increase in the level of NOXA. The elevated level of MCL-1s and the marginally increased NOXA antagonized the increased level of MCL-1, a pro-survival protein of the Bcl-2 family. CONCLUSION: Our results provide some important molecular mechanisms for understanding the relationship between the mitotic checkpoint and programmed cell death and demonstrate that M2I-1 exhibits antitumor activity in the presence of current anti-mitotic drugs such as taxol and nocodazole and has the potential to be developed as an anticancer agent.

6.
Hum Mol Genet ; 27(10): 1743-1753, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29518248

RESUMO

LonP1 is a mitochondrial matrix protease whose selective substrate specificity is essential for maintaining mitochondrial homeostasis. Recessively inherited, pathogenic defects in LonP1 have been previously reported to underlie cerebral, ocular, dental, auricular and skeletal anomalies (CODAS) syndrome, a complex multisystemic and developmental disorder. Intriguingly, although classical mitochondrial disease presentations are well-known to exhibit marked clinical heterogeneity, the skeletal and dental features associated with CODAS syndrome are pathognomonic. We have applied whole exome sequencing to a patient with congenital lactic acidosis, muscle weakness, profound deficiencies in mitochondrial oxidative phosphorylation associated with loss of mtDNA copy number and MRI abnormalities consistent with Leigh syndrome, identifying biallelic variants in the LONP1 (NM_004793.3) gene; c.1693T > C predicting p.(Tyr565His) and c.2197G > A predicting p.(Glu733Lys); no evidence of the classical skeletal or dental defects observed in CODAS syndrome patients were noted in our patient. In vitro experiments confirmed the p.(Tyr565His) LonP1 mutant alone could not bind or degrade a substrate, consistent with the predicted function of Tyr565, whilst a second missense [p.(Glu733Lys)] variant had minimal effect. Mixtures of p.(Tyr565His) mutant and wild-type LonP1 retained partial protease activity but this was severely depleted when the p.(Tyr565His) mutant was mixed with the p.(Glu733Lys) mutant, data consistent with the compound heterozygosity detected in our patient. In summary, we conclude that pathogenic LONP1 variants can lead to a classical mitochondrial disease presentations associated with severe biochemical defects in oxidative phosphorylation in clinically relevant tissues.


Assuntos
Proteases Dependentes de ATP/genética , Anormalidades Craniofaciais/genética , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Luxação Congênita de Quadril/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Osteocondrodisplasias/genética , Anormalidades Dentárias/genética , Biópsia , Linhagem Celular , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/fisiopatologia , Exoma/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/fisiopatologia , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Luxação Congênita de Quadril/metabolismo , Luxação Congênita de Quadril/fisiopatologia , Humanos , Lactente , Doença de Leigh/metabolismo , Doença de Leigh/fisiopatologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Músculo Esquelético/fisiopatologia , Mutação , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/fisiopatologia , Fosforilação Oxidativa , Anormalidades Dentárias/metabolismo , Anormalidades Dentárias/fisiopatologia , Sequenciamento do Exoma
7.
Sci Rep ; 8(1): 1799, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379065

RESUMO

We generated induced pluripotent stem cells (iPSCs) from patient fibroblasts to yield cell lines containing varying degrees of heteroplasmy for a m.13514 A > G mtDNA point mutation (2 lines) and for a ~6 kb single, large scale mtDNA deletion (3 lines). Long term culture of the iPSCs containing a single, large-scale mtDNA deletion showed consistent increase in mtDNA deletion levels with time. Higher levels of mtDNA heteroplasmy correlated with increased respiratory deficiency. To determine what changes occurred in deletion level during differentiation, teratomas comprising all three embryonic germ layers were generated from low (20%) and intermediate heteroplasmy (55%) mtDNA deletion clones. Regardless of whether iPSCs harbouring low or intermediate mtDNA heteroplasmy were used, the final levels of heteroplasmy in all teratoma germ layers increased to a similar high level (>60%). Thus, during human stem cell division, cells not only tolerate high mtDNA deletion loads but seem to preferentially replicate deleted mtDNA genomes. This has implications for the involvement of mtDNA deletions in both disease and ageing.


Assuntos
DNA Mitocondrial/genética , Deleção de Sequência/genética , Diferenciação Celular/genética , Linhagem Celular , Células Clonais/metabolismo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Mutação Puntual/genética
8.
Biochem J ; 474(13): 2145-2158, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28512204

RESUMO

Accurate assembly and maturation of human mitochondrial ribosomes is essential for synthesis of the 13 polypeptides encoded by the mitochondrial genome. This process requires the correct integration of 80 proteins, 1 mt (mitochondrial)-tRNA and 2 mt-rRNA species, the latter being post-transcriptionally modified at many sites. Here, we report that human ribosome-binding factor A (RBFA) is a mitochondrial RNA-binding protein that exerts crucial roles in mitoribosome biogenesis. Unlike its bacterial orthologue, RBFA associates mainly with helices 44 and 45 of the 12S rRNA in the mitoribosomal small subunit to promote dimethylation of two highly conserved consecutive adenines. Characterization of RBFA-depleted cells indicates that this dimethylation is not a prerequisite for assembly of the small ribosomal subunit. However, the RBFA-facilitated modification is necessary for completing mt-rRNA maturation and regulating association of the small and large subunits to form a functional monosome implicating RBFA in the quality control of mitoribosome formation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Proteínas de Escherichia coli/genética , Células HEK293 , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos
9.
Nucleic Acids Res ; 44(14): 6868-82, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27353330

RESUMO

LRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA. The LRPPRC-SLIRP complex comprises a hetero-dimer via interactions by polar amino acids in the single RRM domain of SLIRP and three neighbouring PPR motifs in the second quarter of LRPPRC, which critically contribute to the LRPPRC-SLIRP binding interface to enhance its stability. Unexpectedly, specific amino acids at this interface are located within the PPRs of LRPPRC at positions predicted to interact with RNA and within the RNP1 motif of SLIRP's RRM domain. Our findings thus unexpectedly establish that despite the prediction that these residues in LRPPRC and SLIRP should bind RNA, they are instead used to facilitate protein-protein interactions, enabling the formation of a stable complex between these two proteins.


Assuntos
Proteínas de Neoplasias/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/genética , Sequência Conservada , Reagentes de Ligações Cruzadas/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Mutação/genética , Proteínas de Neoplasias/química , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/química
10.
Mol Cell ; 62(1): 5-6, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058784

RESUMO

A paper from Jain et al. (2016) using whole-genome CRISPR knockout libraries in human cells and models of mitochondrial disease suggests chronic hypoxia could be an unexpected treatment for disorders of mitochondrial respiration.


Assuntos
Doença de Leigh/genética , Doença de Leigh/terapia , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Humanos
11.
Brain ; 138(Pt 12): 3503-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510951

RESUMO

Mitochondrial Complex IV [cytochrome c oxidase (COX)] deficiency is one of the most common respiratory chain defects in humans. The clinical phenotypes associated with COX deficiency include liver disease, cardiomyopathy and Leigh syndrome, a neurodegenerative disorder characterized by bilateral high signal lesions in the brainstem and basal ganglia. COX deficiency can result from mutations affecting many different mitochondrial proteins. The French-Canadian variant of COX-deficient Leigh syndrome is unique to the Saguenay-Lac-Saint-Jean region of Québec and is caused by a founder mutation in the LRPPRC gene. This encodes the leucine-rich pentatricopeptide repeat domain protein (LRPPRC), which is involved in post-transcriptional regulation of mitochondrial gene expression. Here, we present the clinical and molecular characterization of novel, recessive LRPPRC gene mutations, identified using whole exome and candidate gene sequencing. The 10 patients come from seven unrelated families of UK-Caucasian, UK-Pakistani, UK-Indian, Turkish and Iraqi origin. They resemble the French-Canadian Leigh syndrome patients in having intermittent severe lactic acidosis and early-onset neurodevelopmental problems with episodes of deterioration. In addition, many of our patients have had neonatal cardiomyopathy or congenital malformations, most commonly affecting the heart and the brain. All patients who were tested had isolated COX deficiency in skeletal muscle. Functional characterization of patients' fibroblasts and skeletal muscle homogenates showed decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity, associated with abnormal COX assembly and reduced steady-state levels of numerous oxidative phosphorylation subunits. We also identified a Complex I assembly defect in skeletal muscle, indicating different roles for LRPPRC in post-transcriptional regulation of mitochondrial mRNAs between tissues. Patient fibroblasts showed decreased steady-state levels of mitochondrial mRNAs, although the length of poly(A) tails of mitochondrial transcripts were unaffected. Our study identifies LRPPRC as an important disease-causing gene in an early-onset, multisystem and neurological mitochondrial disease, which should be considered as a cause of COX deficiency even in patients originating outside of the French-Canadian population.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Doenças Mitocondriais/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Canadá , Células Cultivadas , Pré-Escolar , Deficiência de Citocromo-c Oxidase/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Proteínas de Repetições Ricas em Leucina , Masculino , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Mutação , Linhagem , Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial
12.
Front Microbiol ; 5: 374, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101074

RESUMO

Protein synthesis is central to life and maintaining a highly accurate and efficient mechanism is essential. What happens when a translating ribosome stalls on a messenger RNA? Many highly intricate processes have been documented in the cytosol of numerous species, but how does organellar protein synthesis resolve this stalling issue? Mammalian mitochondria synthesize just thirteen highly hydrophobic polypeptides. These proteins are all integral components of the machinery that couples oxidative phosphorylation. Consequently, it is essential that stalled mitochondrial ribosomes can be efficiently recycled. To date, there is no evidence to support any particular molecular mechanism to resolve this problem. However, here we discuss the observation that there are four predicted members of the mitochondrial translation release factor family and that only one member, mtRF1a, is necessary to terminate the translation of all thirteen open reading frames in the mitochondrion. Could the other members be involved in the process of recycling stalled mitochondrial ribosomes?

13.
Hum Mol Genet ; 23(23): 6345-55, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008111

RESUMO

The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.


Assuntos
Proteínas Mitocondriais/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Mutação , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Polinucleotídeo Adenililtransferase/genética , Cultura Primária de Células , Processamento Pós-Transcricional do RNA , RNA Mitocondrial , Proteínas de Ligação a RNA/metabolismo
14.
FEBS Lett ; 588(15): 2496-503, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24911204

RESUMO

Mitochondrial protein synthesis is essential for all mammals, being responsible for providing key components of the oxidative phosphorylation complexes. Although only thirteen different polypeptides are made, the molecular details of this deceptively simple process remain incomplete. Central to this process is a non-canonical ribosome, the mitoribosome, which has evolved to address its unique mandate. In this review, we integrate the current understanding of the molecular aspects of mitochondrial translation with recent advances in structural biology. We identify numerous key questions that we will need to answer if we are to increase our knowledge of the molecular mechanisms underlying mitochondrial protein synthesis.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Animais , Humanos , Proteínas Mitocondriais/genética , RNA/genética , RNA/metabolismo , RNA Mitocondrial , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
15.
Hum Mol Genet ; 23(4): 949-67, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24092330

RESUMO

Mutations of mitochondrial DNA are linked to many human diseases. Despite the identification of a large number of variants in the mitochondrially encoded rRNA (mt-rRNA) genes, the evidence supporting their pathogenicity is, at best, circumstantial. Establishing the pathogenicity of these variations is of major diagnostic importance. Here, we aim to estimate the disruptive effect of mt-rRNA variations on the function of the mitochondrial ribosome. In the absence of direct biochemical methods to study the effect of mt-rRNA variations, we relied on the universal conservation of the rRNA fold to infer their disruptive potential. Our method, named heterologous inferential analysis or HIA, combines conservational information with functional and structural data obtained from heterologous ribosomal sources. Thus, HIA's predictive power is superior to the traditional reliance on simple conservation indexes. By using HIA, we have been able to evaluate the disruptive potential for a subset of uncharacterized 12S mt-rRNA variations. Our analysis revealed the existence of variations in the rRNA component of the human mitoribosome with different degrees of disruptive power. In cases where sufficient information regarding the genetic and pathological manifestation of the mitochondrial phenotype is available, HIA data can be used to predict the pathogenicity of mt-rRNA mutations. In other cases, HIA analysis will allow the prioritization of variants for additional investigation. Eventually, HIA-inspired analysis of potentially pathogenic mt-rRNA variations, in the context of a scoring system specifically designed for these variants, could lead to a powerful diagnostic tool.


Assuntos
RNA Ribossômico/genética , RNA/genética , Simulação por Computador , Sequência Conservada , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Conformação de Ácido Nucleico , RNA/química , RNA Mitocondrial , RNA Ribossômico/química
16.
PLoS One ; 8(5): e64670, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741365

RESUMO

The Escherichia coli oligoribonuclease, ORN, has a 3' to 5' exonuclease activity specific for small oligomers that is essential for cell viability. The human homologue, REXO2, has hitherto been incompletely characterized, with only its in vitro ability to degrade small single-stranded RNA and DNA fragments documented. Here we show that the human enzyme has clear dual cellular localization being present both in cytosolic and mitochondrial fractions. Interestingly, the mitochondrial form localizes to both the intermembrane space and the matrix. Depletion of REXO2 by RNA interference causes a strong morphological phenotype in human cells, which show a disorganized network of punctate and granular mitochondria. Lack of REXO2 protein also causes a substantial decrease of mitochondrial nucleic acid content and impaired de novo mitochondrial protein synthesis. Our data constitute the first in vivo evidence for an oligoribonuclease activity in human mitochondria.


Assuntos
Proteínas 14-3-3/genética , Biomarcadores Tumorais/genética , Exorribonucleases/genética , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/genética , Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/metabolismo , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Ácidos Nucleicos/química , Biossíntese de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
17.
RNA Biol ; 10(9): 1433-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23635806

RESUMO

Pentatricopeptide repeat (PPR) proteins constitute a large family of RNA-binding proteins that contain a canonical 35 residue repeat motif. Originally identified in Arabidopsis thaliana, family members are found in protists, fungi, and metazoan but are by far most abundant in plant organelles. Seven examples have been identified in human mitochondria and roles have been tentatively ascribed to each. In this review, we briefly outline each of these PPR proteins and discuss the role each is believed to play in facilitating mitochondrial gene expression.


Assuntos
Mitocôndrias/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Ribonuclease P/genética , Ribonuclease P/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
18.
Nucleic Acids Res ; 40(9): 4040-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22238375

RESUMO

In a comparative genomics study for mitochondrial ribosome-associated proteins, we identified C7orf30, the human homolog of the plant protein iojap. Gene order conservation among bacteria and the observation that iojap orthologs cannot be transferred between bacterial species predict this protein to be associated with the mitochondrial ribosome. Here, we show colocalization of C7orf30 with the large subunit of the mitochondrial ribosome using isokinetic sucrose gradient and 2D Blue Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. We co-purified C7orf30 with proteins of the large subunit, and not with proteins of the small subunit, supporting interaction that is specific to the large mitoribosomal complex. Consistent with this physical association, a mitochondrial translation assay reveals negative effects of C7orf30 siRNA knock-down on mitochondrial gene expression. Based on our data we propose that C7orf30 is involved in ribosomal large subunit function. Sequencing the gene in 35 patients with impaired mitochondrial translation did not reveal disease-causing mutations in C7orf30.


Assuntos
Proteínas Mitocondriais/fisiologia , Biossíntese de Proteínas , Proteínas Ribossômicas/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Genes Bacterianos , Células HEK293 , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Óperon , Filogenia , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Análise de Sequência de DNA
19.
Int J Oncol ; 40(3): 851-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22108807

RESUMO

MDM2 is a 90 kDa nucleo-phosphoprotein that binds p53 and other proteins contributing to its oncogenic properties. Its structure includes an amino proximal p53 binding site, a central acidic domain and a carboxy region which incorporates Zinc and Ring Finger domains suggestive of nucleic acid binding or transcription factor function. It has previously been reported that a bacculovirus expressed MDM2 protein binds RNA in a sequence-specific manner through the Ring Finger domain, however, its ability to bind DNA has yet to be examined. We report here that a bacterially expressed human MDM2 protein binds both DNA as well as the previously defined RNA consensus sequence. DNA binding appears selective and involves the carboxy-terminal domain of the molecule. RNA binding is inhibited by an MDM2 specific antibody, which recognises an epitope within the carboxy region of the protein. Selection cloning and sequence analysis of MDM2 DNA binding sequences, unlike RNA binding sequences, revealed no obvious DNA binding consensus sequence, but preferential binding to oligopurine:pyrimidine-rich stretches. Our results suggest that the observed preferential DNA binding may occur through the Zinc Finger or in a charge-charge interaction through the Ring Finger, thereby implying potentially different mechanisms for DNA and RNA MDM2 binding.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Sítios de Ligação , Sequência Consenso , DNA/genética , Proteínas de Ligação a DNA/genética , Histidina/metabolismo , Humanos , Proteínas Ligantes de Maltose/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência/métodos , Análise de Sequência de DNA/métodos , Dedos de Zinco/genética
20.
Pharm Res ; 28(11): 2871-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21748538

RESUMO

PURPOSE: Mitochondria are competent for DNA uptake in vitro, a mechanism which may support delivery of therapeutic DNA to complement organelle DNA mutations. We document here key aspects of the DNA import process, so as to further lay the ground for mitochondrial transfection in intact cells. METHODS: We developed DNA import assays with isolated mitochondria from different organisms, using DNA substrates of various sequences and sizes. Further import experiments investigated the possible role of ATP and protein phosphorylation in the uptake process. The fate of adenine nucleotides and the formation of phosphorylated proteins were analyzed. RESULTS: We demonstrate that the efficiency of mitochondrial uptake depends on the sequence of the DNA to be translocated. The process becomes sequence-selective for large DNA substrates. Assays run with a natural mitochondrial plasmid identified sequence elements which promote organellar uptake. ATP enhances DNA import and allows tight integration of the exogenous DNA into mitochondrial nucleoids. ATP hydrolysis has to occur during the DNA uptake process and might trigger phosphorylation of co-factors. CONCLUSIONS: Our data contribute critical information to optimize DNA delivery into mitochondria and open the prospect of targeting whole mitochondrial genomes or complex constructs into mammalian organelles in vitro and in vivo.


Assuntos
Carmovirus/genética , DNA/química , Sistemas de Liberação de Medicamentos , Mitocôndrias/química , Zea mays/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , DNA/análise , DNA/genética , DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/análise , Fosforilação/fisiologia , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA