Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(7): e0120924, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38860764

RESUMO

Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.


Assuntos
Proteínas de Membrana , Replicação Viral , Animais , Camundongos , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
2.
Cell Rep ; 35(2): 108967, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852867

RESUMO

T lymphocyte differentiation in the steady state is characterized by high cellular turnover whereby thymocytes do not self-renew. However, if deprived of competent progenitors, the thymus can temporarily maintain thymopoiesis autonomously. This bears a heavy cost, because prolongation of thymus autonomy causes leukemia. Here, we show that, at an early stage, thymus autonomy relies on double-negative 3 early (DN3e) thymocytes that acquire stem-cell-like properties. Following competent progenitor deprivation, DN3e thymocytes become long lived, are required for thymus autonomy, differentiate in vivo, and include DNA-label-retaining cells. At the single-cell level, the transcriptional programs of thymopoiesis in autonomy and the steady state are similar. However, a new cell population emerges in autonomy that expresses an aberrant Notch target gene signature and bypasses the ß-selection checkpoint. In summary, DN3e thymocytes have the potential to self-renew and differentiate in vivo if cell competition is impaired, but this generates atypical cells, probably the precursors of leukemia.


Assuntos
Hematopoese/genética , Leucemia/genética , Receptores Notch/genética , Timócitos/imunologia , Timo/imunologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Proliferação de Células , Família de Proteínas EGF/genética , Família de Proteínas EGF/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hematopoese/imunologia , Humanos , Imunofenotipagem , Rim , Leucemia/imunologia , Leucemia/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Notch/imunologia , Transdução de Sinais , Análise de Célula Única , Timócitos/classificação , Timócitos/patologia , Timo/patologia , Timo/transplante , Fatores de Transcrição/imunologia , Transplante Heterotópico , Transplante Homólogo
3.
mBio ; 8(4)2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679751

RESUMO

Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA.IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease.


Assuntos
DNA/imunologia , Interferon Tipo I/genética , Interferon beta/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Antivirais , Autoimunidade , Citosol , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Moléculas com Motivos Associados a Patógenos , Fosfoproteínas/genética , Retroelementos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA