Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes Metab Syndr Obes ; 12: 1419-1436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616172

RESUMO

BACKGROUND:  Low estrogen states, exemplified by postmenopausal women, are associated with increased adiposity and metabolic dysfunction. We recently reported a paradox, in which a conditional estrogen receptor-alpha (ERα) mutant mouse shows a hyper-metabolic phenotype with enhanced brown/beige cell formation ("browning/beiging"). HYPOTHESIS:  These observations led us to consider that although systemic deficiency of estrogen or ERα in mice results in obesity and glucose intolerance at room temperature, cold exposure might induce enhanced browning/beiging and improve glucose metabolism. METHODS AND RESULTS:  Remarkably, studying cold-exposure in mouse models of inhibited estrogen signaling - ERαKO mice, ovariectomy, and treatment with the ERα antagonist Fulvestrant - supported this notion. ERα/estrogen-deficient mice demonstrated enhanced cold-induced beiging, reduced adiposity and improved glucose tolerance. Fulvestrant was also effective in diet-induced obesity settings. Mechanistically, ERα inhibition sensitized cell-autonomous beige cell differentiation and stimulation, including ß3-adrenoreceptor-dependent adipocyte beiging. CONCLUSION:  Taken together, our findings highlight a therapeutic potential for obese/diabetic postmenopausal patients; cold exposure is therefore predicted to metabolically benefit those patients.

2.
Sci Rep ; 6: 35145, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731367

RESUMO

Insulin secretion is elaborately modulated in pancreatic ß cells within islets of three-dimensional (3D) structures. Using human pluripotent stem cells (hPSCs) to develop islet-like structures with insulin-producing ß cells for the treatment of diabetes is challenging. Here, we report that pancreatic islet-like clusters derived from hESCs are functionally capable of glucose-responsive insulin secretion as well as therapeutic effects. Pancreatic hormone-expressing endocrine cells (ECs) were differentiated from hESCs using a step-wise protocol. The hESC-derived ECs expressed pancreatic endocrine hormones, such as insulin, somatostatin, and pancreatic polypeptide. Notably, dissociated ECs autonomously aggregated to form islet-like, 3D structures of consistent sizes (100-150 µm in diameter). These EC clusters (ECCs) enhanced insulin secretion in response to glucose stimulus and potassium channel inhibition in vitro. Furthermore, ß cell-deficient mice transplanted with ECCs survived for more than 40 d while retaining a normal blood glucose level to some extent. The expression of pancreatic endocrine hormones was observed in tissues transplanted with ECCs. In addition, ECCs could be generated from human induced pluripotent stem cells. These results suggest that hPSC-derived, islet-like clusters may be alternative therapeutic cell sources for treating diabetes.


Assuntos
Glucose/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Glicemia/metabolismo , Agregação Celular , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/terapia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/citologia , Organoides/metabolismo
3.
Nat Commun ; 5: 5196, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25330806

RESUMO

Oestrogen, often via oestrogen receptor alpha (ERα) signalling, regulates metabolic physiology, highlighted by post-menopausal temperature dysregulation (hot flashes), glucose intolerance, increased appetite and reduced metabolic rate. Here we show that ERα signalling has a role in adipose lineage specification in mice. ERα regulates adipose progenitor identity and potency, promoting white adipogenic lineage commitment. White adipose progenitors lacking ERα reprogramme and enter into smooth muscle and brown adipogenic fates. Mechanistic studies highlight a TGFß programme involved in progenitor reprogramming downstream of ERα signalling. The observed reprogramming has profound metabolic outcomes; both female and male adipose-lineage ERα-mutant mice are lean, have improved glucose sensitivity and are resistant to weight gain on a high-fat diet. Further, they are hypermetabolic, hyperphagic and hyperthermic, all consistent with a brown phenotype. Together, these findings indicate that ERα cell autonomously regulates adipose lineage commitment, brown fat and smooth muscle cell formation, and systemic metabolism, in a manner relevant to prevalent metabolic diseases.


Assuntos
Tecido Adiposo Marrom/citologia , Diferenciação Celular , Estrogênios/metabolismo , Miócitos de Músculo Liso/citologia , Transdução de Sinais , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo Branco/citologia , Animais , Linhagem da Célula , Proliferação de Células , Separação Celular , Receptor alfa de Estrogênio/metabolismo , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Mutação , Neovascularização Fisiológica , Fenótipo , Distribuição Aleatória , Células-Tronco/citologia , Fator de Crescimento Transformador beta/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(31): 12673-8, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858470

RESUMO

Leptin is a pivotal regulator of energy and glucose homeostasis, and defects in leptin signaling result in obesity and diabetes. The ATP-sensitive potassium (K(ATP)) channels couple glucose metabolism to insulin secretion in pancreatic ß-cells. In this study, we provide evidence that leptin modulates pancreatic ß-cell functions by promoting K(ATP) channel translocation to the plasma membrane via AMP-activated protein kinase (AMPK) signaling. K(ATP) channels were localized mostly to intracellular compartments of pancreatic ß-cells in the fed state and translocated to the plasma membrane in the fasted state. This process was defective in leptin-deficient ob/ob mice, but restored by leptin treatment. We discovered that the molecular mechanism of leptin-induced AMPK activation involves canonical transient receptor potential 4 and calcium/calmodulin-dependent protein kinase kinase ß. AMPK activation was dependent on both leptin and glucose concentrations, so at optimal concentrations of leptin, AMPK was activated sufficiently to induce K(ATP) channel trafficking and hyperpolarization of pancreatic ß-cells in a physiological range of fasting glucose levels. There was a close correlation between phospho-AMPK levels and ß-cell membrane potentials, suggesting that AMPK-dependent K(ATP) channel trafficking is a key mechanism for regulating ß-cell membrane potentials. Our results present a signaling pathway whereby leptin regulates glucose homeostasis by modulating ß-cell excitability.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Secretoras de Insulina/metabolismo , Leptina/metabolismo , Potenciais da Membrana/fisiologia , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Células Secretoras de Insulina/citologia , Leptina/genética , Camundongos , Camundongos Obesos , Transporte Proteico/fisiologia , ATPase Trocadora de Sódio-Potássio/genética , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
5.
Diabetes ; 58(12): 2813-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19720793

RESUMO

OBJECTIVE: AMP-activated protein kinase (AMPK) and the ATP-sensitive K(+) (K(ATP)) channel are metabolic sensors that become activated during metabolic stress. AMPK is an important regulator of metabolism, whereas the K(ATP) channel is a regulator of cellular excitability. Cross talk between these systems is poorly understood. RESEARCH DESIGN AND METHODS: Rat pancreatic beta-cells or INS-1 cells were pretreated for 2 h at various concentrations of glucose. Maximum K(ATP) conductance (G(max)) was monitored by whole-cell measurements after intracellular ATP washout using ATP-free internal solutions. K(ATP) channel activity (NPo) was monitored by inside-out patch recordings in the presence of diazoxide. Distributions of K(ATP) channel proteins (Kir6.2 and SUR1) were examined using immunofluorescence imaging and surface biotinylation studies. Insulin secretion from rat pancreatic islets was measured using an enzyme immunoassay. RESULTS: G(max) and NPo in cells pretreated with glucose-free or 3 mmol/l glucose solutions were significantly higher than in cells pretreated in 11.1 mmol/l glucose solutions. Immunofluorescence imaging and biotinylation studies revealed that glucose deprivation induced an increase in the surface level of Kir6.2 without affecting the total cellular amount. Increases in G(max) and the surface level of Kir6.2 were inhibited by compound C, an AMPK inhibitor, and siAMPK transfection. The effects of glucose deprivation on K(ATP) channels were mimicked by an AMPK activator. Glucose deprivation reduced insulin secretion, but this response was attenuated by compound C. CONCLUSIONS: K(ATP) channel trafficking is regulated by energy status via AMPK, and this mechanism may play a key role in inhibiting insulin secretion under low energy status.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/deficiência , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Canais KATP/metabolismo , Animais , Biotinilação , Western Blotting , Eletrofisiologia , Imunofluorescência , Glucose/metabolismo , Técnicas Imunoenzimáticas , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA