Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Tryptophan Res ; 17: 11786469241248287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757094

RESUMO

Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.

3.
J Infect Dis ; 226(11): 1964-1973, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767283

RESUMO

BACKGROUND: The resolution or aggravation of dengue infection depends on the patient's immune response during the critical phase. Cytokines released by immune cells increase with the worsening severity of dengue infections. Cytokines activate the kynurenine pathway (KP) and the extent of KP activation then influences disease severity. METHODS: KP metabolites and cytokines in plasma samples of patients with dengue infection (dengue without warning signs [DWS-], dengue with warning signs [DWS+], or severe dengue) were analyzed. Cytokines (interferon gamma [IFN-É£], tumor necrosis factor, interleukin 6, CXCL10/interferon-inducile protein 10 [IP-10], interleukin 18 [IL-18], CCL2/monocyte chemoattractant protein-1 [MCP-1], and CCL4/macrophage inflammatory protein-1beta [MIP-1ß] were assessed by a Human Luminex Screening Assay, while KP metabolites (tryptophan, kynurenine, anthranilic acid [AA], picolinic acid, and quinolinic acid) were assessed by ultra-high-performance liquid chromatography and Gas Chromatography Mass Spectrophotometry [GCMS] assays. RESULTS: Patients with DWS+ had increased activation of the KP where kynurenine-tryptophan ratio, anthranilic acid, and picolinic acid were elevated. These patients also had higher levels of the cytokines IFN-É£, CXCL10, CCL4, and IL-18 than those with DWS-. Further receiver operating characteristic analysis identified 3 prognostic biomarker candidates, CXCL10, CCL2, and AA, which predicted patients with higher risks of developing DWS+ with an accuracy of 97%. CONCLUSIONS: The data suggest a unique biochemical signature in patients with DWS+. CXCL10 and CCL2 together with AA are potential prognostic biomarkers that discern patients with higher risk of developing DWS+ at earlier stages of infection.


Assuntos
Cinurenina , Dengue Grave , Humanos , Cinurenina/metabolismo , Citocinas , Triptofano/metabolismo , Interleucina-18 , Quimiocina CCL2 , Interferon gama , Quimiocina CXCL10
4.
Cannabis Cannabinoid Res ; 6(3): 177-195, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33998900

RESUMO

Introduction: Some cannabinoids have been identified as anti-inflammatory agents; however, their potential therapeutic or prophylactic applications remain controversial. The aim of this systematic review was to provide a timely and comprehensive insight into cannabinoid-mediated pro- and anti-inflammatory cytokine responses in preclinical in vivo studies. Methods and Materials: A systematic search was conducted using PubMed, Web of Science, EMBASE, and Scopus. Eligible studies where cannabinoids had been evaluated for their effect on inflammation in animal models were included in the analysis. Data were extracted from 26 of 4247 eligible full text articles, and risk of bias was assessed using the SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) tool. Studies examined cannabidiol (CBD; n=20); cannabigerol (CBG; n=1); delta 9-tetrahydrocannabinol (THC; n=2); THC and CBD separately (n=1); and THC and CBD in combination (n=2). Results: Tumor necrosis factor alpha, interleukin (IL)-1ß, IL-6, and interferon gamma were the most commonly studied pro-inflammatory cytokines and their levels were consistently reduced after treatment with CBD, CBG, or CBD+THC, but not with THC alone. The association between cannabinoid-induced anti-inflammatory response and disease severity was examined. In 22 studies where CBD, CBG, or CBD in combination with THC were administered, a reduction in the levels of at least one inflammatory cytokine was observed, and in 24 studies, some improvements in disease or disability were apparent. THC alone did not reduce pro-inflammatory cytokine levels (n=3), but resulted in improvements in neuropathic pain in one study. Conclusions: This review shows that CBD, CBG, and CBD+THC combination exert a predominantly anti-inflammatory effect in vivo, whereas THC alone does not reduce pro-inflammatory or increase anti-inflammatory cytokines. It is anticipated that this information could be used to inform human clinical trials of cannabinoids, focusing on CBD and CBG to reduce inflammation across a range of pathophysiological processes.


Assuntos
Anti-Inflamatórios/farmacologia , Canabinoides/farmacologia , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Animais
5.
Breast Cancer Res ; 22(1): 113, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109232

RESUMO

BACKGROUND: Immunotherapy has recently been proposed as a promising treatment to stop breast cancer (BrCa) progression and metastasis. However, there has been limited success in the treatment of BrCa with immune checkpoint inhibitors. This implies that BrCa tumors have other mechanisms to escape immune surveillance. While the kynurenine pathway (KP) is known to be a key player mediating tumor immune evasion and while there are several studies on the roles of the KP in cancer, little is known about KP involvement in BrCa. METHODS: To understand how KP is regulated in BrCa, we examined the KP profile in BrCa cell lines and clinical samples (n = 1997) that represent major subtypes of BrCa (luminal, HER2-enriched, and triple-negative (TN)). We carried out qPCR, western blot/immunohistochemistry, and ultra-high pressure liquid chromatography on these samples to quantify the KP enzyme gene, protein, and activity, respectively. RESULTS: We revealed that the KP is highly dysregulated in the HER2-enriched and TN BrCa subtype. Gene, protein expression, and KP metabolomic profiling have shown that the downstream KP enzymes KMO and KYNU are highly upregulated in the HER2-enriched and TN BrCa subtypes, leading to increased production of the potent immunosuppressive metabolites anthranilic acid (AA) and 3-hydroxylanthranilic acid (3HAA). CONCLUSIONS: Our findings suggest that KMO and KYNU inhibitors may represent new promising therapeutic targets for BrCa. We also showed that KP metabolite profiling can be used as an accurate biomarker for BrCa subtyping, as we successfully discriminated TN BrCa from other BrCa subtypes.


Assuntos
Neoplasias da Mama/patologia , Hidrolases/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Cinurenina/metabolismo , Redes e Vias Metabólicas , Evasão Tumoral , Adulto , Idoso , Biomarcadores Tumorais/sangue , Neoplasias da Mama/classificação , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias
6.
Gastroenterology ; 157(4): 1093-1108.e11, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325428

RESUMO

BACKGROUND & AIMS: Inflammation, injury, and infection up-regulate expression of the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in the intestinal epithelium. We studied the effects of cell-specific IDO1 expression in the epithelium at baseline and during intestinal inflammation in mice. METHODS: We generated transgenic mice that overexpress fluorescence-tagged IDO1 in the intestinal epithelium under control of the villin promoter (IDO1-TG). We generated intestinal epithelial spheroids from mice with full-length Ido1 (controls), disruption of Ido1 (knockout mice), and IDO1-TG and analyzed them for stem cell and differentiation markers by real-time polymerase chain reaction, immunoblotting, and immunofluorescence. Some mice were gavaged with enteropathogenic Escherichia coli (E2348/69) to induce infectious ileitis, and ileum contents were quantified by polymerase chain reaction. Separate sets of mice were given dextran sodium sulfate or 2,4,6-trinitrobenzenesulfonic acid to induce colitis; intestinal tissues were analyzed by histology. We utilized published data sets GSE75214 and GDS2642 of RNA expression data from ilea of healthy individuals undergoing screening colonoscopies (controls) and patients with Crohn's disease. RESULTS: Histologic analysis of small intestine tissues from IDO1-TG mice revealed increases in secretory cells. Enteroids derived from IDO1-TG intestine had increased markers of stem, goblet, Paneth, enteroendocrine, and tuft cells, compared with control enteroids, with a concomitant decrease in markers of absorptive cells. IDO1 interacted non-enzymatically with the aryl hydrocarbon receptor to inhibit activation of NOTCH1. Intestinal mucus layers from IDO1-TG mice were 2-fold thicker than mucus layers from control mice, with increased proportions of Akkermansia muciniphila and Mucispirillum schaedleri. Compared to controls, IDO1-TG mice demonstrated an 85% reduction in ileal bacteria (P = .03) when challenged with enteropathogenic E coli, and were protected from immune infiltration, crypt dropout, and ulcers following administration of dextran sodium sulfate or 2,4,6-trinitrobenzenesulfonic acid. In ilea of Crohn's disease patients, increased expression of IDO1 correlated with increased levels of MUC2, LYZ1, and aryl hydrocarbon receptor, but reduced levels of SLC2A5. CONCLUSIONS: In mice, expression of IDO1 in the intestinal epithelial promotes secretory cell differentiation and mucus production; levels of IDO1 are positively correlated with secretory cell markers in ilea of healthy individuals and Crohn's disease patients. We propose that IDO1 contributes to intestinal homeostasis.


Assuntos
Bactérias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Microbioma Gastrointestinal , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/microbiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Notch/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Linhagem Celular , Linhagem da Célula , Modelos Animais de Doenças , Células Epiteliais/enzimologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Genótipo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos Knockout , Fenótipo , Receptores de Hidrocarboneto Arílico/genética , Receptores Notch/genética , Via Secretória , Transdução de Sinais , Células-Tronco/enzimologia , Células-Tronco/microbiologia , Células-Tronco/patologia
7.
Neurotox Res ; 35(3): 530-541, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30666558

RESUMO

Upregulation of the kynurenine pathway (KP) of tryptophan metabolism is commonly observed in neurodegenerative disease. When activated, L-kynurenine (KYN) increases in the periphery and central nervous system where it is further metabolised to other neuroactive metabolites including 3-hydroxykynurenine (3-HK), kynurenic acid (KYNA) and quinolinic acid (QUIN). Particularly biologically relevant metabolites are 3-HK and QUIN, formed downstream of the enzyme kynurenine 3-monooxygenase (KMO) which plays a pivotal role in maintaining KP homeostasis. Indeed, excessive production of 3-HK and QUIN has been described in neurodegenerative disease including Alzheimer's disease and Huntington's disease. In this study, we characterise KMO activity in human primary neurons and identified new mechanisms by which KMO activation mediates neurotoxicity. We show that while transient activation of the KP promotes synthesis of the essential co-enzyme nicotinamide adenine dinucleotide (NAD+), allowing cells to meet short-term increased energy demands, chronic KMO activation induces production of reactive oxygen species (ROS), mitochondrial damage and decreases spare-respiratory capacity (SRC). We further found that these events generate a vicious-cycle, as mitochondrial dysfunction further shunts the KP towards the KMO branch of the KP to presumably enhance QUIN production. These mechanisms may be especially relevant in neurodegenerative disease as neurons are highly sensitive to oxidative stress and mitochondrial impairment.


Assuntos
Sobrevivência Celular/fisiologia , Quinurenina 3-Mono-Oxigenase/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Trifosfato de Adenosina/metabolismo , Encéfalo/metabolismo , Células HEK293 , Humanos , Ácido Cinurênico/metabolismo , Cinurenina/análogos & derivados , Cinurenina/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Doenças Mitocondriais/metabolismo , NAD/metabolismo , Cultura Primária de Células , Ácido Quinolínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Mol Autism ; 9: 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443311

RESUMO

Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome. Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain. Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala. Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.


Assuntos
Transtorno do Espectro Autista/genética , Diferenciação Celular/genética , Neurônios/citologia , Pentosiltransferases/genética , Linhagem Celular Tumoral , Deleção Cromossômica , Cromossomos Humanos Par 16 , Variações do Número de Cópias de DNA , Humanos
9.
Inflamm Bowel Dis ; 24(7): 1471-1480, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29796641

RESUMO

Background and Aims: Mucosal appearance on endoscopy is an important indicator of inflammatory burden and determines prognosis in ulcerative colitis (UC). Inflammation induces tryptophan metabolism along the kynurenine pathway (KP) and yields immunologically relevant metabolites. We sought to examine whether changes in serum tryptophan metabolites and tissue expression of KP enzymes are associated with UC endoscopic and histologic disease severity. Methods: Serum and mucosal samples were prospectively obtained at colonoscopy in patients with UC. Mayo disease activity scores, demographics, smoking status, medications, and outcomes were collected. Serum tryptophan metabolites were analyzed using ultra-high performance liquid chromatography (uHPLC), and gas chromatography-mass spectrometry (GC-MS), and enzyme expression was determined by quantitative real-time polymerase chain reaction. Metabolite and enzyme levels were compared by endoscopic subscore, clinical disease activity, time to surgery, and hospitalization. Results: This study included 99 patients with Mayo endoscopic subscores 0-3. Kynurenic acid/tryptophan ratio (KYNA/T) and expression of indolamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase, kynurinase, and kynurenine monooxygenase correlated positively with endoscopic subscore. Adjusting for age of diagnosis, smoking status, disease extent, and medications yielded significant odds of endoscopic inflammation with increasing KYNA/T (OR 1.0015, P = 0.0186) and IDO1 expression (OR 1.0635, P = 0.0215). The highest tertile ratio of KYNA/T had shorter time to surgery (P = 0.009) and hospitalization (P = 0.01) than the lowest. Conclusions: Increasing KYNA/T is closely associated with endoscopic inflammation and predictive of disease outcomes in patients with UC. These findings identify this novel metabolic association and further support the role of the KP in regulating mucosal inflammation in UC. 10.1093/ibd/izy103_video1izy103.video15788135676001.


Assuntos
Colite Ulcerativa/metabolismo , Cinurenina/metabolismo , Triptofano/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/análise , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Colite Ulcerativa/patologia , Colonoscopia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Inflamação/metabolismo , Cinurenina/sangue , Modelos Logísticos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Análise Multivariada , Sensibilidade e Especificidade , Triptofano/sangue , Adulto Jovem
10.
Free Radic Biol Med ; 115: 371-382, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29198726

RESUMO

Neopterin, a well-established biomarker for immune system activation, is found at increased levels in the cerebrospinal fluid of individuals affected by neurological/neurodegenerative diseases. Here, neopterin synthesis was investigated in different nerve cells (rodent and human) and in the mouse hippocampus under inflammatory stimuli. We also aimed to investigate whether neopterin preconditioning could modulate the inflammasome activation, a component of the innate immune system. Increased neopterin was detected in human nerve cells supernatants (highest secretion in astrocytes) exposed to lipopolysaccharide (LPS) and interferon-gamma (INF-γ) and in the hippocampus of mice receiving LPS (0.33mg/kg; intraperitoneal). In parallel to the hippocampal-increased neopterin, it was observed a significant increase in the expression of the rate-limiting enzyme of its biosynthetic pathway, and both phenomena occurred before the inflammasome activation. Moreover, a significant inhibition of the inflammasome activation was observed in neopterin pre-conditioned human astrocytes, when challenged with LPS, by reducing IL-1ß, caspase-1 and ASC expression or content, components of the NLRP3 inflammasome. Mechanistically, neopterin might induce eletrophilic stress and consequently the nuclear translocation of the transcription factor Nrf-2, and the anti-inflammatory cytokines IL-10 and IL-1ra release, which would induce the inhibition of the inflammasome activation. Altogether, this strongly suggests an essential role of neopterin during inflammatory processes.


Assuntos
Astrócitos/fisiologia , Hipocampo/metabolismo , Inflamassomos/metabolismo , Inflamação/imunologia , Fator 2 Relacionado a NF-E2/metabolismo , Neopterina/metabolismo , Neurônios/fisiologia , Animais , Linhagem Celular Tumoral , Hipocampo/patologia , Humanos , Imunidade Inata , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Ratos , Transdução de Sinais
11.
Xenotransplantation ; 24(5)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28771838

RESUMO

BACKGROUND: For xenotransplantation to truly succeed, we must develop immunomodulatory strategies to suppress the xenoimmune response but by minimizing immunosuppression over the long term. Regulatory macrophages (Mreg) have been shown to suppress polyclonal T-cell proliferation in vitro and prolong allograft survival in vivo. However, the question of whether they are capable of suppressing xenoimmune responses remains unknown. This study assessed the potential of human Mreg to be used as an effective immunomodulatory method in xenotransplantation. METHODS: CD14+ monocytes selected from human peripheral blood mononuclear cells (PBMC) were cultured with macrophage colony-stimulating factor (M-CSF) for 7 days with IFN-γ added at day 6 for Mreg induction. Mreg phenotyping was performed by flow cytometric analysis, and the in vitro suppressive function was assessed by mixed lymphocyte reaction (MLR) using irradiated pig PBMC as the xenogeneic stimulator cells, human PBMC as responder cells, and autologous Mreg as suppressor cells. To assess mRNA expression of Mreg functional molecules indoleamine-2,3-dioxygenase (IDO), IL-10, inducible nitric oxide synthase (iNOS) and TGF-ß were measured by real-time PCR. Supernatants were collected from the MLR cultures for IDO activity assay by high-performance liquid chromatography (HPLC). The effects of the IDO inhibitor 1-D/L-methyl-tryptophan (1-MT), iNOS inhibitor NG -monomethyl-l-arginine (L-NMMA), and anti-IFN-γ or anti-TGF-ß monoclonal antibody (mAb) treatment on Mreg suppressive capacity were tested from the supernatants of the MLR assays. RESULTS: We demonstrated that induced Mreg with a phenotype of CD14low CD16-/low CD80low CD83-/low CD86+/hi HLA-DR+/hi were capable of suppressing proliferating human PBMC, CD4+, and CD8+ T cells, even at a higher responder:Mreg ratio of 32:1 in a pig-human xenogeneic MLR. The strong suppressive potency of Mreg was further correlated with their upregulated IDO expression and activity. The IDO upregulation of Mreg was associated with an increased production of IFN-γ, an IDO stimulator, by xenoreactive responder cells in the xenogeneic MLR. While no effect on Mreg suppressive potency was detected by addition of the iNOS inhibitor L-NMMA or anti-TGF-ß mAb into the MLR assays, inhibition of IDO activity by neutralizing IFN-γ or by IDO inhibitor 1-MT substantially impaired the capacity of Mreg to suppress the xenogeneic response, indicating the importance of upregulated IDO activity in Mreg-mediated suppression of the xenogeneic response in vitro. CONCLUSION: This study demonstrates that human Mreg are capable of suppressing the xenoimmune response in vitro via IDO-involved mechanism(s), suggesting their potential role as an effective immunomodulatory tool in xenotransplantation.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Terapia de Imunossupressão , Monócitos/imunologia , Suínos , Linfócitos T/imunologia , Transplante Heterólogo/métodos
12.
Neurotox Res ; 30(4): 620-632, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510585

RESUMO

The kynurenine (KYN) pathway (KP) is a major degradative pathway of the amino acid, L-tryptophan (TRP), that ultimately leads to the anabolism of the essential pyridine nucleotide, nicotinamide adenine dinucleotide. TRP catabolism results in the production of several important metabolites, including the major immune tolerance-inducing metabolite KYN, and the neurotoxin and excitotoxin quinolinic acid. Dendritic cells (DCs) have been shown to mediate immunoregulatory roles that mediated by TRP catabolism. However, characterization of the KP in human DCs has so far only been partly delineated. It is critical to understand which KP enzymes are expressed and which KP metabolites are produced to be able to understand their regulatory effects on the immune response. In this study, we characterized the KP in human monocyte-derived DCs (MDDCs) in comparison with the human primary macrophages using RT-PCR, high-pressure gas chromatography, mass spectrometry, and immunocytochemistry. Our results show that the KP is entirely expressed in human MDDC. Following activation of the KP using interferon gamma, MDDCs can mediate apoptosis of T h cells in vitro. Understanding the molecular mechanisms regulating KP metabolism in MDDCs may provide renewed insight for the development of novel therapeutics aimed at modulating immunological effects and peripheral tolerance.


Assuntos
Células Dendríticas/enzimologia , Fatores Imunológicos/farmacologia , Interferon gama/farmacologia , Cinurenina/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/enzimologia , Antígenos CD8/análise , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Cinurenina/antagonistas & inibidores , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Espectrometria de Massas , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo
13.
Front Immunol ; 7: 246, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540379

RESUMO

The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson's disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington's disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood-brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.

14.
Oncotarget ; 7(6): 6506-20, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26646699

RESUMO

Breast cancer (BrCa) is the leading cause of cancer related death in women. While current diagnostic modalities provide opportunities for early medical intervention, significant proportions of breast tumours escape treatment and metastasize. Gaining increasing recognition as a factor in tumour metastasis is the local immuno-surveillance environment. Following identification of the role played by the enzyme indoleamine dioxygenase 1 (IDO1) in mediating maternal foetal tolerance, the kynurenine pathway (KP) of tryptophan metabolism has emerged as a key metabolic pathway contributing to immune escape. In inflammatory conditions activation of the KP leads to the production of several immune-modulating metabolites including kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, picolinic acid and quinolinic acid. KP over-activation was first described in BrCa patients in the early 1960s. More evidence has since emerged to suggest that the IDO1 is elevated in advanced BrCa patients and is associated with poor prognosis. Further, IDO1 positive breast tumours have a positive correlation with the density of immune suppressive Foxp3+ T regulatory cells and lymph node metastasis. The analysis of clinical microarray data in invasive BrCa compared to normal tissue showed, using two microarray databank (cBioportal and TCGA), that 86.3% and 91.4% BrCa patients have altered KP enzyme expression respectively. Collectively, these data highlight the key roles played by KP activation in BrCa, particularly in basal BrCa subtypes where expression of most KP enzymes was altered. Accordingly, the use of KP enzyme inhibitors in addition to standard chemotherapy regimens may present a viable therapeutic approach.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Imunidade Celular/imunologia , Cinurenina/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos
15.
PLoS One ; 10(6): e0131389, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114426

RESUMO

The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.


Assuntos
Regulação Enzimológica da Expressão Gênica , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Quinurenina 3-Mono-Oxigenase/biossíntese , Cinurenina/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Neurodegenerativas/metabolismo , Regulação para Cima , Feminino , Humanos , Leucócitos Mononucleares/patologia , Masculino , Doenças Neurodegenerativas/patologia
16.
Stem Cells ; 33(1): 111-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186311

RESUMO

The mechanisms involved in the anabolic effect of interferon gamma (IFNγ) on bone have not been carefully examined. Using microarray expression analysis, we found that IFNγ upregulates a set of genes associated with a tryptophan degradation pathway, known as the kynurenine pathway, in osteogenic differentiating human mesenchymal stem cells (hMSC). We, therefore, hypothesized that activation of the kynurenine pathway plays a role in osteoblastogenesis even in the absence of IFNγ. Initially, we observed a strong increase in tryptophan degradation during osteoblastogenesis with and without IFNγ in the media. We next blocked indoleamine 2,3-dioxygenase-1 (IDO1), the most important enzyme in the kynurenine pathway, using a siRNA and pharmacological approach and observed a strong inhibition of osteoblastogenesis with a concomitant decrease in osteogenic factors. We next examined the bone phenotype of Ido1 knockout (Ido1(-/-)) mice. Compared to their wild-type littermates, Ido1(-/-) mice exhibited osteopenia associated with low osteoblast and high osteoclast numbers. Finally, we tested whether the end products of the kynurenine pathway have an osteogenic effect on hMSC. We identified that picolinic acid had a strong and dose-dependent osteogenic effect in vitro. In summary, we demonstrate that the activation of the kynurenine pathway plays an important role during the commitment of hMSC into the osteoblast lineage in vitro, and that this process can be accelerated by exogenous addition of IFNγ. In addition, we found that mice lacking IDO1 activity are osteopenic. These data therefore support a new role for the kynurenine pathway and picolinic acid as essential regulators of osteoblastogenesis and as potential new targets of bone-forming cells in vivo.


Assuntos
Cinurenina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Triptofano/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoporose/patologia
17.
PLoS One ; 9(11): e112945, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415278

RESUMO

The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+)). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+), which is necessary for energy production and DNA repair.


Assuntos
Vias Biossintéticas , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Cinurenina/biossíntese , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Antígeno CD11b/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Dissacarídeos , Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/genética , Glioma/fisiopatologia , Glucuronatos , Humanos , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Ácido Cinurênico/sangue , Ácido Cinurênico/metabolismo , Cinurenina/sangue , Ácidos Picolínicos/sangue , Ácidos Picolínicos/metabolismo , Ácido Quinolínico/sangue , Ácido Quinolínico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triptofano/sangue , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Células Tumorais Cultivadas
18.
Neuropsychopharmacology ; 38(5): 743-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23299933

RESUMO

The NMDA-receptor antagonist ketamine has proven efficient in reducing symptoms of suicidality, although the mechanisms explaining this effect have not been detailed in psychiatric patients. Recent evidence points towards a low-grade inflammation in brains of suicide victims. Inflammation leads to production of quinolinic acid (QUIN) and kynurenic acid (KYNA), an agonist and antagonist of the glutamatergic N-methyl-D-aspartate (NMDA) receptor, respectively. We here measured QUIN and KYNA in the cerebrospinal fluid (CSF) of 64 medication-free suicide attempters and 36 controls, using gas chromatography mass spectrometry and high-performance liquid chromatography. We assessed the patients clinically using the Suicide Intent Scale and the Montgomery-Asberg Depression Rating Scale (MADRS). We found that QUIN, but not KYNA, was significantly elevated in the CSF of suicide attempters (P<0.001). As predicted, the increase in QUIN was associated with higher levels of CSF interleukin-6. Moreover, QUIN levels correlated with the total scores on Suicide Intent Scale. There was a significant decrease of QUIN in patients who came for follow-up lumbar punctures within 6 months after the suicide attempt. In summary, we here present clinical evidence of increased QUIN in the CSF of suicide attempters. An increased QUIN/KYNA quotient speaks in favor of an overall NMDA-receptor stimulation. The correlation between QUIN and the Suicide Intent Scale indicates that changes in glutamatergic neurotransmission could be specifically linked to suicidality. Our findings have important implications for the detection and specific treatment of suicidal patients, and might explain the observed remedial effects of ketamine.


Assuntos
Encefalite/líquido cefalorraquidiano , Encefalite/psicologia , Agonistas de Aminoácidos Excitatórios/líquido cefalorraquidiano , Suicídio/psicologia , Adulto , Idoso , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Seguimentos , Humanos , Interleucina-6/metabolismo , Ácido Cinurênico/líquido cefalorraquidiano , Cinurenina/líquido cefalorraquidiano , Masculino , Transtornos Mentais/complicações , Transtornos Mentais/psicologia , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Ácido Quinolínico/líquido cefalorraquidiano , Estudos Retrospectivos , Distúrbios Somatossensoriais/complicações , Punção Espinal , Trítio/líquido cefalorraquidiano , Adulto Jovem
19.
Int J Tryptophan Res ; 3: 157-67, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22084596

RESUMO

The kynurenine pathway (KP) is a major degradative pathway of tryptophan ultimately leading to the production of nicotinamide adenine dinucleotide (NAD(+)) and is also one of the major regulatory mechanisms of the immune response. The KP is known to be involved in several neuroinflammatory disorders including Alzheimer's disease, amyotrophic lateral sclerosis, AIDS dementia complex, Parkinson's disease, schizophrenia, Huntington's disease and brain tumours. However, the KP remains a relatively new topic for the field of multiple sclerosis (MS). Over the last 2-3 years, some evidence has progressively emerged suggesting that the KP is likely to be involved in the pathogenesis of autoimmune diseases especially MS. Some KP modulators are already in clinical trials for other inflammatory diseases and would potentially provide a new and important therapeutic strategy for MS patients. This review summarizes the known relationships between the KP and MS.

20.
J Neurosci ; 27(47): 12884-92, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18032661

RESUMO

The kynurenine pathway is a major route of L-tryptophan catabolism producing neuroactive metabolites implicated in neurodegeneration and immune tolerance. We characterized the kynurenine pathway in human neurons and the human SK-N-SH neuroblastoma cell line and found that the kynurenine pathway enzymes were variably expressed. Picolinic carboxylase was expressed only in primary and some adult neurons but not in SK-N-SH cells. Because of this difference, SK-N-SH cells were able to produce the excitotoxin quinolinic acid, whereas human neurons produced the neuroprotectant picolinic acid. The net result of kynurenine pathway induction in human neurons is therefore predicted to result in neuroprotection, immune regulation, and tumor inhibition, whereas in SK-N-SH cells, it may result in neurotoxicity, immune tolerance, and tumor promotion. This study represents the first comprehensive characterization of the kynurenine pathway in neurons and the first description of the involvement of the kynurenine pathway as a mechanism for controlling both tumor cell neurotoxicity and persistence.


Assuntos
Cinurenina/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Adulto , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Cinurenina/genética , Masculino , Pessoa de Meia-Idade , Neuroblastoma/genética , Neuroblastoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA