Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1235337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028628

RESUMO

Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

2.
J Am Heart Assoc ; 10(5): e019140, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586462

RESUMO

Background Elevated plasma levels of direct low-density lipoprotein cholesterol (LDL-C), small dense LDL-C (sdLDL-C), low-density lipoprotein (LDL) triglycerides, triglycerides, triglyceride-rich lipoprotein cholesterol, remnant lipoprotein particle cholesterol, and lipoprotein(a) have all been associated with incident atherosclerotic cardiovascular disease (ASCVD). Our goal was to assess which parameters were most strongly associated with ASCVD risk. Methods and Results Plasma total cholesterol, triglycerides, high-density lipoprotein cholesterol, direct LDL-C, sdLDL-C, LDL triglycerides, remnant lipoprotein particle cholesterol, triglyceride-rich lipoprotein cholesterol, and lipoprotein(a) were measured using standardized automated analysis (coefficients of variation, <5.0%) in samples from 3094 fasting subjects free of ASCVD. Of these subjects, 20.2% developed ASCVD over 16 years. On univariate analysis, all ASCVD risk factors were significantly associated with incident ASCVD, as well as the following specialized lipoprotein parameters: sdLDL-C, LDL triglycerides, triglycerides, triglyceride-rich lipoprotein cholesterol, remnant lipoprotein particle cholesterol, and direct LDL-C. Only sdLDL-C, direct LDL-C, and lipoprotein(a) were significant on multivariate analysis and net reclassification after adjustment for standard risk factors (age, sex, hypertension, diabetes mellitus, smoking, total cholesterol, and high-density lipoprotein cholesterol). Using the pooled cohort equation, many specialized lipoprotein parameters individually added significant information, but no parameter added significant information once sdLDL-C (hazard ratio, 1.42; P<0.0001) was in the model. These results for sdLDL-C were confirmed by adjusted discordance analysis versus calculated non-high-density lipoprotein cholesterol, in contrast to LDL triglycerides. Conclusions sdLDL-C, direct LDL-C, and lipoprotein(a) all contributed significantly to ASCVD risk on multivariate analysis, but no parameter added significant risk information to the pooled cohort equation once sdLDL-C was in the model. Our data indicate that small dense LDL is the most atherogenic lipoprotein parameter.


Assuntos
Aterosclerose/sangue , LDL-Colesterol/sangue , Previsões , Aterosclerose/epidemiologia , Biomarcadores/sangue , HDL-Colesterol/sangue , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
3.
Stat Med ; 39(6): 801-813, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31799744

RESUMO

Advanced technology in whole-genome sequencing has offered the opportunity to comprehensively investigate the genetic contribution, particularly rare variants, to complex traits. Several region-based tests have been developed to jointly model the marginal effect of rare variants, but methods to detect gene-environment (GE) interactions are underdeveloped. Identifying the modification effects of environmental factors on genetic risk poses a considerable challenge. To tackle this challenge, we develop a method to detect GE interactions for rare variants using generalized linear mixed effect model. The proposed method can accommodate either binary or continuous traits in related or unrelated samples. Under this model, genetic main effects, GE interactions, and sample relatedness are modeled as random effects. We adopt a kernel-based method to leverage the joint information across rare variants and implement variance component score tests to reduce the computational burden. Our simulation studies of continuous and binary traits show that the proposed method maintains correct type I error rates and appropriate power under various scenarios, such as genotype main effects and GE interaction effects in opposite directions and varying the proportion of causal variants in the model. We apply our method in the Framingham Heart Study to test GE interaction of smoking on body mass index or overweight status and replicate the Cholinergic Receptor Nicotinic Beta 4 gene association reported in previous large consortium meta-analysis of single nucleotide polymorphism-smoking interaction. Our proposed set-based GE test is computationally efficient and is applicable to both binary and continuous phenotypes, while appropriately accounting for familial or cryptic relatedness.


Assuntos
Interação Gene-Ambiente , Modelos Genéticos , Simulação por Computador , Variação Genética , Genótipo , Humanos , Modelos Lineares , Fenótipo
4.
Clin Chem ; 65(9): 1102-1114, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239251

RESUMO

BACKGROUND: Increases in circulating LDL cholesterol (LDL-C) and high-sensitivity C-reactive protein (hsCRP) concentrations are significant risk factors for cardiovascular disease (CVD). We assessed direct LDL-C and hsCRP concentrations compared to standard risk factors in the Framingham Offspring Study. METHODS: We used stored frozen plasma samples (-80 °C) obtained after an overnight fast from 3147 male and female participants (mean age, 58 years) free of CVD at cycle 6 of the Framingham Offspring Study. Overall, 677 participants (21.5%) had a CVD end point over a median of 16.0 years of follow-up. Total cholesterol (TC), triglyceride (TG), HDL cholesterol (HDL-C), direct LDL-C (Denka Seiken and Kyowa Medex methods), and hsCRP (Dade Behring method) concentrations were measured by automated analysis. LDL-C was also calculated by both the Friedewald and Martin methods. RESULTS: Considering all CVD outcomes on univariate analysis, significant factors included standard risk factors (age, hypertension, HDL-C, hypertension treatment, sex, diabetes, smoking, and TC concentration) and nonstandard risk factors (non-HDL-C, direct LDL-C and calculated LDL-C, TG, and hsCRP concentrations). On multivariate analysis, only the Denka Seiken direct LDL-C and the Dade Behring hsCRP were still significant on Cox regression analysis and improved the net risk reclassification index, but with modest effects. Discordance analysis confirmed the benefit of the Denka Seiken direct LDL-C method for prospective hard CVD endpoints (new-onset myocardial infarction, stroke, and/or CVD death). CONCLUSIONS: Our data indicate that the Denka Seiken direct LDL-C and Dade Behring hsCRP measurements add significant, but modest, information about CVD risk, compared to standard risk factors and/or calculated LDL-C.


Assuntos
Proteína C-Reativa/análise , Doenças Cardiovasculares/etiologia , LDL-Colesterol/sangue , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Modelos de Riscos Proporcionais , Estudos Prospectivos , Medição de Risco
5.
Nat Genet ; 51(4): 636-648, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926973

RESUMO

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.


Assuntos
Lipídeos/sangue , Lipídeos/genética , Fumar/sangue , Fumar/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Estilo de Vida , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
BMC Proc ; 12(Suppl 9): 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275881

RESUMO

BACKGROUND: DNA methylation, an epigenetic modification, can be affected by environmental factors and thus regulate gene expression levels that can lead to alterations of certain phenotypes. Network analysis has been used successfully to discover gene sets that are expressed differently across multiple disease states and suggest possible pathways of disease progression. We applied this framework to compare DNA methylation levels before and after lipid-lowering medication and to identify modules that differ topologically between the two time points, revealing the association between lipid medication and these triglyceride-related methylation sites. METHODS: We performed quality control using beta-mixture quantile normalization on 463,995 cytosine-phosphate-guanine (CpG) sites and deleted problematic sites, resulting in 423,004 probes. We identified 14,850 probes that were nominally associated with triglycerides prior to treatment and performed weighted gene correlation network analysis (WGCNA) to construct pre- and posttreatment methylation networks of these probes. We then applied both WGCNA module preservation and generalized Hamming distance (GHD) to identify modules with topological differences between the pre- and posttreatment. For modules with structural changes between 2 time points, we performed pathway-enrichment analysis to gain further insight into the biological function of the genes from these modules. RESULTS: Six triglyceride-associated modules were identified using pretreatment methylation probes. The same 3 modules were not preserved in posttreatment data using both the module-preservation and the GHD methods. Top-enriched pathways for the 3 differentially methylated modules are sphingolipid signaling pathway, proteoglycans in cancer, and metabolic pathways (p values < 0.005). One module in particular included an enrichment of lipid-related pathways among the top results. CONCLUSIONS: The same 3 modules, which were differentially methylated between pre- and posttreatment, were identified using both WGCNA module-preservation and GHD methods. Pathway analysis revealed that triglyceride-associated modules contain groups of genes that are involved in lipid signaling and metabolism. These 3 modules may provide insight into the effect of fenofibrate on changes in triglyceride levels and these methylation sites.

7.
Nat Commun ; 8: 14977, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28443625

RESUMO

Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.


Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Obesidade/genética , Locos de Características Quantitativas/genética , Fumar/genética , Adiposidade/genética , Adulto , Distribuição da Gordura Corporal , Índice de Massa Corporal , Epistasia Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Circunferência da Cintura/genética , Relação Cintura-Quadril
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA