Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 145, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259141

RESUMO

Mesenchymal stem cells (MSCs) have been studied for their potential benefits in treating acute respiratory distress syndrome (ARDS) and have reported mild effects when trialed within human clinical trials. MSCs have been investigated in preclinical models with efficacy when administered at the time of lung injury. Human integrin α10ß1-selected adipose tissue-derived MSCs (integrin α10ß1-MSCs) have shown immunomodulatory and regenerative effects in various disease models. We hypothesized that integrin α10ß1 selected-MSCs can be used to treat a sepsis-induced ARDS in a porcine model when administering cells after established injury rather than simultaneously. This was hypothesized to reflect a clinical picture of treatment with MSCs in human ARDS. 12 pigs were randomized to the treated or placebo-controlled group prior to the induction of mild to moderate ARDS via lipopolysaccharide administration. The treated group received 5 × 106 cells/kg integrin α10ß1-selected MSCs and both groups were followed for 12 h. ARDS was confirmed with blood gases and retrospectively with histological changes. After intervention, the treated group showed decreased need for inotropic support, fewer signs of histopathological lung injury including less alveolar wall thickening and reduction of the hypercoagulative disease state. The MSC treatment was not associated with adverse events over the monitoring period. This provides new opportunities to investigate integrin α10ß1-selected MSCs as a treatment for a disease which does not yet have any definitive therapeutic options.


Assuntos
Lesão Pulmonar , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Animais , Integrinas , Síndrome do Desconforto Respiratório/diagnóstico , Estudos Retrospectivos , Suínos
2.
Biomark Res ; 9(1): 6, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468257

RESUMO

BACKGROUND: Infection and graft-versus-host disease (GvHD) are the major causes for mortality and morbidity of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Plasma-derived extracellular vesicles (EVs) contain disease-related proteins, DNAs and RNAs, and have recently been suggested as potential biomarker candidates for transplantation complications. However, EV isolation from small plasma volumes in clinical biomarker studies using conventional methods is challenging. We therefore investigated if EVs isolated by novel automated acoustic trapping could be developed as potential biomarkers for allo-HSCT complications by performing a clinical proof-of-principle study. RESULTS: Plasma samples were collected from twenty consecutive patients with high-risk/relapsed hematologic malignancies undergoing allo-HSCT before transplantation and post-transplant up to 12 weeks. EVs were isolated from small plasma sample volumes (150 µl) by an automated, acoustofluidic-based particle trapping device, which utilizes a local λ/2 ultrasonic standing wave in a borosilicate glass capillary to capture plasma EVs among pre-seeded polystyrene microbeads through sound scatter interactions. We found that EVs could be reliably isolated from all plasma samples (n = 173) and that EV numbers increased more than 2-fold in the majority of patients after transplantation. Also, sufficient quantities of RNA for downstream microRNA (miRNA) analysis were obtained from all samples and EV miRNA profiles were found to differ from whole plasma profiles. As a proof of principle, expression of platelet-specific miR-142-3p in EVs was shown to correlate with platelet count kinetics after transplantation as expected. Importantly, we identified plasma EV miRNAs that were consistently positively correlated with infection and GvHD, respectively, as well as miRNAs that were consistently negatively correlated with these complications. CONCLUSIONS: This study demonstrates that acoustic enrichment of EVs in a clinical biomarker study setting is feasible and that downstream analysis of acoustically-enriched EVs presents a promising tool for biomarker development in allo-HSCT. Certainly, these findings warrant further exploration in larger studies, which will have significant implications not only for biomarker studies in transplantation but also for the broad field of EV-based biomarker discovery.

3.
Cytometry A ; 99(5): 476-487, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32542988

RESUMO

Culture-expanded mesenchymal stromal cells (MSCs) are promising candidates for clinical cell-based therapies. MSC products are heterogeneous and we therefore investigated whether acoustophoresis, an ultrasound-based separation technology, could be used for the label-free enrichment of functionally different MSC populations. Acoustophoresis uses an ultrasonic standing wave field in a microchannel that differentially affects the movement of cells depending on their acoustophysical properties, such as size, density, and compressibility. Human bone marrow (BM) MSCs were generated by standard adherent culture in xeno-free medium and separated by microchip acoustophoresis. MSCs with up to 20% higher proliferation and 1.7-fold increased clonogenic potential were enriched in the side outlet of the chip compared to the input sample. These cells were significantly smaller (average diameter 14.5 ± 0.4 µm) compared to the center outlet fraction (average diameter 17.1 ± 0.6 µm) and expressed higher levels of genes related to proliferation and stem cell properties (i.e., Ki-67 [1.9-fold], Nanog1 [6.65-fold], Oct4 [2.9-fold], and CXCL12 [1.8-fold], n = 3) in the side outlet compared to input. Fractions of MSCs in G0 /G1 cell cycle phase were significantly enriched in the side fraction and an up to 2.8-fold increase of cells in S/G2 /M phases were observed in center fractions compared to side fractions and 1.3-fold increased compared to the input sample. Acoustophoresis did not compromise MSC phenotype, proliferation, clonogenic capacity, and viability (generally 87-98%), nor did it affect differentiation or immunomodulatory capacities. These results demonstrate that label-free acoustic separation can enrich functionally different MSC subsets which can potentially be employed to produce better-defined stromal cell products from cultured MSCs. Hence, acoustophoresis is a potentially promising separation technology to provide improved cell products for research and possible future clinical use. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Assuntos
Células-Tronco Mesenquimais , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Humanos , Imunomodulação
4.
Haematologica ; 105(5): 1206-1215, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31371413

RESUMO

Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28 Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.


Assuntos
Células-Tronco Mesenquimais , Adulto , Antígenos CD34 , Células da Medula Óssea , Proliferação de Células , Células-Tronco Hematopoéticas , Humanos , Células Estromais
5.
Anal Chem ; 90(13): 8011-8019, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29806448

RESUMO

Extracellular vesicles (EVs) have emerged as a rich source of biomarkers providing diagnostic and prognostic information in diseases such as cancer. Large-scale investigations into the contents of EVs in clinical cohorts are warranted, but a major obstacle is the lack of a rapid, reproducible, efficient, and low-cost methodology to enrich EVs. Here, we demonstrate the applicability of an automated acoustic-based technique to enrich EVs, termed acoustic trapping. Using this technology, we have successfully enriched EVs from cell culture conditioned media and urine and blood plasma from healthy volunteers. The acoustically trapped samples contained EVs ranging from exosomes to microvesicles in size and contained detectable levels of intravesicular microRNAs. Importantly, this method showed high reproducibility and yielded sufficient quantities of vesicles for downstream analysis. The enrichment could be obtained from a sample volume of 300 µL or less, an equivalent to 30 min of enrichment time, depending on the sensitivity of downstream analysis. Taken together, acoustic trapping provides a rapid, automated, low-volume compatible, and robust method to enrich EVs from biofluids. Thus, it may serve as a novel tool for EV enrichment from large number of samples in a clinical setting with minimum sample preparation.


Assuntos
Acústica , Fracionamento Celular/métodos , Vesículas Extracelulares/metabolismo , Plasma/citologia , Urina/citologia , Fracionamento Celular/instrumentação , Linhagem Celular Tumoral , Exossomos/metabolismo , Humanos , MicroRNAs/genética
6.
Eur J Haematol ; 101(1): 57-67, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29645296

RESUMO

OBJECTIVE: Philadelphia-negative myeloproliferative neoplasms (MPNs) commonly share hyperactive JAK-STAT signaling affecting hematopoietic stem cells (HSC) and their progeny. The JAK1/2 inhibitor Ruxolitinib has remarkable clinical efficacy, including spleen reduction, improvement of constitutional symptoms, and bone marrow (BM) fibrosis reversal. Whether this is due to inhibition of JAK2-mutated HSC only, or whether Ruxolitinib also affects BM stroma is not known. METHODS: This study investigated potential effects of Ruxolitinib on BM mesenchymal stromal cells (MSC), which are not only major regulators of hematopoiesis but also contribute to fibrosis, from 10 healthy donors and 7 JAK2V617F -positive MPN patients. RESULTS: Ruxolitinib moderately inhibited the growth of healthy donor MSC (HD-MSC) and MSC from JAK2V617F+ MPN patients (P-MSC) in short- and long-term assays. The clonogenic potential of HD-MSC was not affected by Ruxolitinib. JAK-STAT signaling, however, was markedly inhibited in both HD-MSC and P-MSC, the latter of which showed higher expression of fibrosis-associated and hematopoiesis-maintenance genes. Moreover, Ruxolitinib reduced MSC secretion of MCP-1 and IL-6. CONCLUSION: Ruxolitinib affected JAK2 signaling in MSC at clinically relevant doses, which is likely to contribute to the normalization of the inflammatory milieu in MPNs. Thus, combined HSC and stroma-directed interventions have the potential to improve constitutional symptoms and reduce stromal proliferation in MPNs.


Assuntos
Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/enzimologia , Medula Óssea/imunologia , Medula Óssea/patologia , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Feminino , Fibrose , Células-Tronco Hematopoéticas/enzimologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Janus Quinase 1/genética , Janus Quinase 1/imunologia , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/enzimologia , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/genética , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/imunologia , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/imunologia , Transtornos Mieloproliferativos/patologia , Nitrilas , Cultura Primária de Células , Pirimidinas , Transdução de Sinais
7.
Stem Cells Dev ; 25(21): 1652-1658, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27527928

RESUMO

Human bone marrow contains a population of non-hematopoietic stromal stem/progenitor cells (BMSCs), which play a central role for bone marrow stroma and the hematopoietic microenvironment. However, the precise characteristics and potential stem cell properties of defined BMSC populations have not yet been thoroughly investigated. Using standard adherent colony-forming unit fibroblast (CFU-F) assays, we have previously shown that BMSCs were highly enriched in the nonhematopoietic CD271pos/CD140alow/neg fraction of normal adult human bone marrow. In this study, we demonstrate that prospectively isolated CD271pos/CD140alow/neg BMSCs expressed high levels of hematopoiesis supporting genes and signature mesenchymal and multipotency genes on a single cell basis. Furthermore, CD271pos/CD140alow/neg BMSCs gave rise to non-adherent sphere colonies (mesenspheres) with typical surface marker profile and trilineage in vitro differentiation potential. Importantly, serial transplantations of CD271pos/CD140alow/neg BMSC-derived mesenspheres (single cell and bulk) into immunodeficient NOD scid gamma (NSG) mice showed increased mesensphere numbers and full differentiation potential after both primary and secondary transplantations. In contrast, BMSC self-renewal potential decreased under standard adherent culture conditions. These data therefore indicate that CD271pos/CD140alow/neg BMSCs represent a population of primary stem cells with MSC phenotype and sphere-forming capacity that fulfill stringent functional stem cell criteria in vivo in a serial transplantation setting.

8.
Ann N Y Acad Sci ; 1370(1): 109-18, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27270495

RESUMO

Bone marrow (BM) contains a rare population of mesenchymal stromal cells (MSCs), which have been characterized as nonhematopoietic skeletal progenitor cells with central importance for the hematopoietic microenvironment. Classically, MSCs are isolated by plastic adherence and subsequent culture. However, as cultured stromal cells differ from their in vivo progenitors, it is important to identify the phenotype of the primary MSCs to study these cells in more detail. In the past years, several surface markers have been reported to be suitable for effective enrichment of BM-MSCs, and recent data indicate that the putative MSC stem/progenitor cell population in human adult BM is highly enriched in Lin(-) CD45(-) CD271(+) CD140a (PDGFRα)(low/-) cells. Moreover, surface marker combinations have been described for the isolation of MSCs from murine BM. On the basis of these findings, the role of primary MSCs can now be studied in normal and, importantly, diseased BM. Furthermore, genetically engineered mouse models have been developed as powerful tools to investigate well-defined BM stromal cell populations in vivo. Our discussion aims to provide a concise overview of the current state of the art in BM-MSC isolation in humans and briefly present murine MSC isolation approaches and genetic models.


Assuntos
Células-Tronco Adultas/citologia , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Adultas/metabolismo , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fenótipo
9.
Biochim Biophys Acta ; 1855(2): 276-300, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829250

RESUMO

Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neovascularização Patológica/genética , Proteoglicanas/biossíntese , Pesquisa Translacional Biomédica , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/uso terapêutico , Transdução de Sinais/genética , Microambiente Tumoral/genética
10.
Mol Cancer ; 14: 15, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623282

RESUMO

BACKGROUND: Cell surface proteoglycans interact with numerous regulators of cell behavior through their glycosaminoglycan chains. The syndecan family of transmembrane proteoglycans are virtually ubiquitous cell surface receptors that are implicated in the progression of some tumors, including breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. METHODS: The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two-tailed paired t-test and one-way ANOVA with Tukey's post-hoc test were used in the analysis of data. RESULTS: MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced invasion and matrix degradation. The molecular basis for this effect was revealed to have two components. First, thrombin inhibition contributed to enhanced cell adhesion and reduced invasion. Second, a specific loss of cell surface syndecan-2 was noted. The ensuing junction formation was dependent on syndecan-4, whose role in promoting actin cytoskeletal organization is known. Syndecan-2 interacts with, and may regulate, caveolin-2. Depletion of either molecule had the same adhesion-promoting influence, along with reduced invasion, confirming a role for this complex in maintaining the invasive phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. CONCLUSION: Cell surface proteoglycans, notably syndecan-2, may be important regulators of breast carcinoma progression through regulation of cytoskeleton, cell adhesion and invasion.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias da Mama/genética , Caveolina 2/genética , Caveolina 2/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Heparina/metabolismo , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Fenótipo , Receptor PAR-1/metabolismo , Transdução de Sinais , Sindecana-2/genética , Sindecana-2/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Trombina/metabolismo
11.
Int J Exp Pathol ; 96(1): 1-10, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25546317

RESUMO

In the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.


Assuntos
Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sindecanas/metabolismo , Animais , Genótipo , Humanos , Inflamação/metabolismo , Ligantes , Camundongos Knockout , Neoplasias/metabolismo , Fenótipo , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Relação Estrutura-Atividade , Sindecanas/química , Sindecanas/deficiência , Sindecanas/genética
12.
Biochim Biophys Acta ; 1840(8): 2482-90, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24447566

RESUMO

BACKGROUND: While syndecan-2 is usually considered a mesenchymal transmembrane proteoglycan, it can be upregulated in some tumour cells, such as the malignant breast carcinoma cell line, MDA-MB231. Depletion of this syndecan by siRNA, but not other syndecans, has a marked effect on cell morphology, increasing spreading, microfilament bundle and focal adhesion formation, with reduced cell migration. METHODS: A combination of siRNA transfection, immunofluorescence microscopy, phosphoprotein analysis and migration assays was used to determine how syndecan-2 may influence the cytoskeleton. RESULTS: The altered adhesion upon syndecan-2 depletion was dependent on the RhoGTPases. p190ARhoGAP relocated to the margins of spreading cells, where it codistributed with syndecan-4 and active ß1-integrin. This was accompanied by increased RhoGAP tyrosine phosphorylation, indicative of activity and RhoGTPase suppression. Consistent with this, GTP-RhoA was strongly present at the edges of control cells, but lost after syndecan-2 reduction by siRNA treatments. Further, RhoA, but not RhoC was shown to be essential for the anchored phenotype of these breast carcinoma cells that accompanied siRNA-mediated loss of syndecan-2. CONCLUSIONS: Syndecan-2 has a key role in promoting the invasive activity of these cells, in part by regulating the RhoGTPases. GENERAL SIGNIFICANCE: Syndecan-2, as a cell surface receptor is accessible for targeting to determine whether breast tumour progression is altered. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Forma Celular , Sindecana-2/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Integrina beta1/metabolismo , Transporte Proteico , Proteínas Repressoras/metabolismo , Sindecana-4/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA