Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 35(11): 2452-2464, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28294398

RESUMO

Chondral lesions frequently occur in different topographic locations of the knee. This study evaluated the functional properties among the articulating surfaces of the tibiofemoral and patellofemoral joints, and whether neo-cartilage engineered using chondrocytes from different knee locations would reflect these differences. The biomechanical properties of bovine cartilage isolated from eight locations within the tibiofemoral (medial and lateral condyle, medial and lateral tibial plateau) and patellofemoral joints (medial and lateral trochlea, medial and lateral patella) were examined. Tensile Young's moduli (tensile moduli) and aggregate moduli of the medial condyle were lower than those of the medial tibial plateau (6.11 ± 0.89 MPa vs. 7.19 ± 1.05 MPa, p = 0.04 and 354.4 ± 38.3 kPa vs. 419.4 ± 31.3 kPa, p = 0.002, respectively). Patella tensile and compressive moduli were lower than the trochlea (4.79 ± 2.01 MPa vs. 6.91 ± 2.46 MPa, p = 0.01 and 337.4 ± 37.2 kPa vs. 389.1 ± 38.3 kPa, p = 0.0005, respectively). Furthermore, chondrocytes from the above locations were used to engineer neo-cartilage, and its respective properties were evaluated. In neo-cartilage, medial condyle tensile and aggregate moduli were lower than in the medial tibial plateau (0.96 ± 0.23 MPa vs. 1.31 ± 0.31 MPa, p = 0.02, and 115.8 ± 26.0 kPa vs. 160.8 ± 18.8 kPa, p = 0.001, respectively). Compared to trochlear chondrocytes, neo-cartilage formed from patellar chondrocytes exhibited lower tensile and compressive moduli (1.16 ± 0.27 MPa vs. 0.74 ± 0.25 MPa, p < 0.001, and 109.1 ± 24.0 kPa vs. 82.5 ± 18.1 kPa, p < 0.001). A significant degree of disparity in biomechanical properties of the opposing articular surfaces was detected; the medial condyle and patella exhibited inferior properties compared to the opposing medial tibial plateau and trochlea, respectively. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2452-2464, 2017.


Assuntos
Cartilagem Articular/fisiologia , Articulação do Joelho/fisiologia , Engenharia Tecidual , Animais , Fenômenos Biomecânicos , Doenças das Cartilagens/etiologia , Bovinos , Condrócitos/fisiologia , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA