Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 66(5): 1007-1023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501483

RESUMO

In plants, thousands of nucleus-encoded proteins translated in the cytosol are sorted to chloroplasts and mitochondria by binding to specific receptors of the TOC (translocon on the outer chloroplast membrane) and the TOM (translocon on the outer mitochondrial membrane) complexes for import into those organelles. The degradation pathways for these receptors are unclear. Here, we discovered a converged ubiquitin-proteasome pathway for the degradation of Arabidopsis thaliana TOC and TOM tail-anchored receptors. The receptors are ubiquitinated by E3 ligase(s) and pulled from the outer membranes by the AAA+ adenosine triphosphatase CDC48, after which a previously uncharacterized cytosolic protein, transmembrane domain (TMD)-binding protein for tail-anchored outer membrane proteins (TTOP), binds to the exposed TMDs at the C termini of the receptors and CDC48, and delivers these complexes to the 26S proteasome.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ubiquitina/metabolismo , Proteólise , Proteína com Valosina/metabolismo
2.
Front Plant Sci ; 14: 1150309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143882

RESUMO

Continuous discovery of novel in vitro plant culture practices is always essential to promote better plant growth in the shortest possible cultivation period. An alternative approach to conventional micropropagation practice could be achieved through biotization by inoculating selected Plant Growth Promoting Rhizobacteria (PGPR) into the plant tissue culture materials (e.g., callus, embryogenic callus, and plantlets). Such biotization process often allows the selected PGPR to form a sustaining population with various stages of in vitro plant tissues. During the biotization process, plant tissue culture material imposes developmental and metabolic changes and enhances its tolerance to abiotic and biotic stresses, thereby reducing mortality in the acclimatization and pre-nursery stages. Understanding the mechanisms is, therefore crucial for gaining insights into in vitro plant-microbe interactions. Studies of biochemical activities and compound identifications are always essential to evaluate in vitro plant-microbe interactions. Given the importance of biotization in promoting in vitro plant material growth, this review aims to provide a brief overview of the in vitro oil palm plant-microbe symbiosis system.

3.
Nat Commun ; 13(1): 7822, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535933

RESUMO

Pollen tube is the fastest-growing plant cell. Its polarized growth process consumes a tremendous amount of energy, which involves coordinated energy fluxes between plastids, the cytosol, and mitochondria. However, how the pollen tube obtains energy and what the biological roles of pollen plastids are in this process remain obscure. To investigate this energy-demanding process, we developed second-generation ratiometric biosensors for pyridine nucleotides which are pH insensitive between pH 7.0 to pH 8.5. By monitoring dynamic changes in ATP and NADPH concentrations and the NADH/NAD+ ratio at the subcellular level in Arabidopsis (Arabidopsis thaliana) pollen tubes, we delineate the energy metabolism that underpins pollen tube growth and illustrate how pollen plastids obtain ATP, NADPH, NADH, and acetyl-CoA for fatty acid biosynthesis. We also show that fermentation and pyruvate dehydrogenase bypass are not essential for pollen tube growth in Arabidopsis, in contrast to other plant species like tobacco and lily.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tubo Polínico , NADP/metabolismo , NAD/metabolismo , Proteínas de Arabidopsis/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo
4.
Nat Commun ; 13(1): 652, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115512

RESUMO

Stomatal opening requires the provision of energy in the form of ATP for proton pumping across the guard cell (GC) plasma membrane and for associated metabolic rearrangements. The source of ATP for GCs is a matter of ongoing debate that is mainly fuelled by controversies around the ability of GC chloroplasts (GCCs) to perform photosynthesis. By imaging compartment-specific fluorescent ATP and NADPH sensor proteins in Arabidopsis, we show that GC photosynthesis is limited and mitochondria are the main source of ATP. Unlike mature mesophyll cell (MC) chloroplasts, which are impermeable to cytosolic ATP, GCCs import cytosolic ATP through NUCLEOTIDE TRANSPORTER (NTT) proteins. GCs from ntt mutants exhibit impaired abilities for starch biosynthesis and stomatal opening. Our work shows that GCs obtain ATP and carbohydrates via different routes from MCs, likely to compensate for the lower chlorophyll contents and limited photosynthesis of GCCs.


Assuntos
Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Estômatos de Plantas/metabolismo , Amido/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cloroplastos/efeitos dos fármacos , Cloroplastos/efeitos da radiação , Citosol/metabolismo , Peróxido de Hidrogênio/farmacologia , Luz , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Células do Mesofilo/efeitos da radiação , Microscopia Confocal , NADP/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Oxidantes/farmacologia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas
5.
Quant Plant Biol ; 2: e7, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37077204

RESUMO

Efficient photosynthesis requires a balance of ATP and NADPH production/consumption in chloroplasts, and the exportation of reducing equivalents from chloroplasts is important for balancing stromal ATP/NADPH ratio. Here, we showed that the overexpression of purple acid phosphatase 2 on the outer membranes of chloroplasts and mitochondria can streamline the production and consumption of reducing equivalents in these two organelles, respectively. A higher capacity of consumption of reducing equivalents in mitochondria can indirectly help chloroplasts to balance the ATP/NADPH ratio in stroma and recycle NADP+, the electron acceptors of the linear electron flow (LEF). A higher rate of ATP and NADPH production from the LEF, a higher capacity of carbon fixation by the Calvin-Benson-Bassham (CBB) cycle and a greater consumption of NADH in mitochondria enhance photosynthesis in the chloroplasts, ATP production in the mitochondria and sucrose synthesis in the cytosol and eventually boost plant growth and seed yields in the overexpression lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA