Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Mol Life Sci ; 81(1): 42, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217709

RESUMO

Neprilysin (NEP) is an emerging biomarker for various diseases including heart failure (HF). However, major inter-assay inconsistency in the reported concentrations of circulating NEP and uncertainty with respect to its correlations with type and severity of disease are in part attributed to poorly characterized antibodies supplied in commercial ELISA kits. Validated antibodies with well-defined binding footprints are critical for understanding the biological and clinical context of NEP immunoassay data. To achieve this, we applied in silico epitope prediction and rational peptide selection to generate monoclonal antibodies (mAbs) against spatially distant sites on NEP. One of the selected epitopes contained published N-linked glycosylation sites at N285 and N294. The best antibody pair, mAb 17E11 and 31E1 (glycosylation-sensitive), were characterized by surface plasmon resonance, isotyping, epitope mapping, and western blotting. A validated two-site sandwich NEP ELISA with a limit of detection of 2.15 pg/ml and working range of 13.1-8000 pg/ml was developed with these mAbs. Western analysis using a validated commercial polyclonal antibody (PE pAb) and our mAbs revealed that non-HF and HF plasma NEP circulates as a heterogenous mix of moieties that possibly reflect proteolytic processing, post-translational modifications and homo-dimerization. Both our mAbs detected a ~ 33 kDa NEP fragment which was not apparent with PE pAb, as well as a common ~ 57-60 kDa moiety. These antibodies exhibit different affinities for the various NEP targets. Immunoassay results are dependent on NEP epitopes variably detected by the antibody pairs used, explaining the current discordant NEP measurements derived from different ELISA kits.


Assuntos
Anticorpos Monoclonais , Insuficiência Cardíaca , Humanos , Epitopos , Neprilisina/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunoensaio/métodos
2.
NAR Cancer ; 4(3): zcac027, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177382

RESUMO

Oncogenic mutations in the RAS family of small GTPases are commonly found in human cancers and they promote tumorigenesis by altering gene expression networks. We previously demonstrated that Casein Kinase 1α (CK1α), a member of the CK1 family of serine/threonine kinases, is post-transcriptionally upregulated by oncogenic RAS signaling. Here, we report that the CK1α mRNA contains an exceptionally long 5'-untranslated region (UTR) harbouring several translational control elements, implicating its involvement in translational regulation. We demonstrate that the CK1α 5'-UTR functions as an IRES element in HCT-116 colon cancer cells to promote cap-independent translation. Using tobramycin-affinity RNA-pulldown assays coupled with identification via mass spectrometry, we identified several CK1α 5'-UTR-binding proteins, including SFPQ. We show that RNA interference targeting SFPQ reduced CK1α protein abundance and partially blocked RAS-mutant colon cancer cell growth. Importantly, transcript and protein levels of SFPQ and other CK1α 5'-UTR-associated RNA-binding proteins (RBPs) are found to be elevated in early stages of RAS-mutant cancers, including colorectal and lung adenocarcinoma. Taken together, our study uncovers a previously unappreciated role of RBPs in promoting RAS-mutant cancer cell growth and their potential to serve as promising biomarkers as well as tractable therapeutic targets in cancers driven by oncogenic RAS.

3.
Proteomics ; 22(9): e2100175, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35083852

RESUMO

Protein O-GlcNAcylation is a specific form of protein glycosylation that targets a wide range of proteins with important functions. O-GlcNAcylation is known to be deregulated in cancer and has been linked to multiple aspects of cancer pathology. Despite its ubiquity and importance, the current understanding of the role of O-GlcNAcylation in the stress response remains limited. In this study, we performed a quantitative chemical proteomics-based open study of the O-GlcNAcome in HeLa cells, and identified 163 differentially-glycosylated proteins under starvation, involving multiple metabolic pathways. Among them, fatty acid metabolism was found to be targeted and subsequent analysis confirmed that fatty acid synthase (FASN) is O-GlcNAcylated. O-GlcNAcylation led to enhanced de novo fatty acid synthesis (FAS) activity, and fatty acids contributed to the cytoprotective effects of O-GlcNAcylation under starvation. Moreover, dual inhibition of O-GlcNAcylation and FASN displayed a strong synergistic effect in vitro in inducing cell death in cancer cells. Together, the results from this study provide novel insights into the role of O-GlcNAcylation in the nutritional stress response and suggest the potential of combining inhibition of O-GlcNAcylation and FAS in cancer therapy.


Assuntos
N-Acetilglucosaminiltransferases , Neoplasias , Acetilglucosamina/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos , Células HeLa , Humanos , N-Acetilglucosaminiltransferases/genética , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
4.
iScience ; 24(11): 103354, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805801

RESUMO

The Krebs cycle enzyme fumarase, which has been identified as a tumor suppressor, is involved in the deoxyribonucleic acid (DNA) damage response (DDR) in human, yeast, and bacterial cells. We have found that the overexpression of the cysteine desulfurase Nfs1p restores DNA repair in fumarase-deficient yeast cells. Nfs1p accumulates inactivating post-translational modifications in yeast cells lacking fumarase under conditions of DNA damage. Our model is that in addition to metabolic signaling of the DDR in the nucleus, fumarase affects the DDR by protecting the desulfurase Nfs1p in mitochondria from modification and inactivation. Fumarase performs this protection by directly binding to Nfs1p in mitochondria and enabling, the maintenance, via metabolism, of a non-oxidizing environment in mitochondria. Nfs1p is required for the formation of Fe-S clusters, which are essential cofactors for DNA repair enzymes. Thus, we propose that the overexpression of Nfs1p overcomes the lack of fumarase by enhancing the activity of DNA repair enzymes.

5.
J Clin Periodontol ; 48(12): 1559-1569, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605060

RESUMO

AIM: The present study aimed to investigate the salivary proteome profiles of pregnant women with gingivitis (PG) or without gingivitis (HP) and non-pregnant healthy controls (HC) by employing iTRAQ-based proteomics. MATERIALS AND METHODS: Saliva samples were collected from 30 Chinese women comprising 10 subjects in each of the three groups (PG, HP, and HC). The samples were subjected to iTRAQ-based proteomics analysis, and ELISA was performed to validate the results. The subsequent observations were validated in a cohort of 48 subjects. RESULTS: Pathways associated with neutrophil-mediated immune response and antioxidant defence mechanism were significantly higher in PG than HC. The abundance of salivary cystatins (S, SA, and SN) and antimicrobials were significantly decreased in PG and HP, while cystatin C and D were additionally decreased in PG. Cystatin C was mapped to all the major catabolic pathways and was the most re-wired protein in pregnancy gingivitis. Further validation demonstrated cystatin C to be significantly lower in PG than HC. CONCLUSIONS: While the decrease in levels of salivary cystatins and antimicrobial proteins may predispose healthy pregnant women to pregnancy gingivitis, it may cause persistence of inflammation in pregnant women with gingivitis.


Assuntos
Gengivite , Proteoma , Feminino , Humanos , Neutrófilos , Gravidez , Proteômica , Saliva
6.
Commun Biol ; 4(1): 441, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824395

RESUMO

High quality, well-validated antibodies are needed to mitigate irreproducibility and clarify conflicting data in science. We describe an epitope-directed monoclonal antibody (mAb) production method that addresses issues of antibody quality, validation and utility. The workflow is illustrated by generating mAbs against multiple in silico-predicted epitopes on human ankyrin repeat domain 1 (hANKRD1) in a single hybridoma production cycle. Antigenic peptides (13-24 residues long) presented as three-copy inserts on the surface exposed loop of a thioredoxin carrier produced high affinity mAbs that are reactive to native and denatured hANKRD1. ELISA assay miniaturization afforded by novel DEXT microplates allowed rapid hybridoma screening with concomitant epitope identification. Antibodies against spatially distant sites on hANKRD1 facilitated validation schemes applicable to two-site ELISA, western blotting and immunocytochemistry. The use of short antigenic peptides of known sequence facilitated direct epitope mapping crucial for antibody characterization. This robust method motivates its ready adoption for other protein targets.


Assuntos
Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Epitopos/imunologia , Proteínas Musculares/imunologia , Proteínas Nucleares/imunologia , Proteínas Repressoras/imunologia , Linhagem Celular Tumoral , Humanos
7.
J Mol Biol ; 432(23): 6108-6126, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33058874

RESUMO

The Krebs cycle enzyme fumarase is a dual-targeted protein that is located in the mitochondria and cytoplasm of eukaryotic cells. Besides being involved in the TCA cycle and primary metabolism, fumarase is a tumour suppressor that aids DNA repair in human cells. Using mass spectrometry, we identified modifications in peptides of cytosolic yeast fumarase, some of which were absent when the cells were exposed to DNA damage (using the homing endonuclease system or hydroxyurea). We show that DNA damage increased the enzymatic activity of fumarase, which we hypothesized to be affected by post-translational modifications. Succinylation and ubiquitination of fumarase at lysines 78 and 79, phosphorylation at threonine 122, serine 124 and threonine 126 as well as deamidation at arginine 239 were found to be functionally relevant. Upon homology analysis, these residues were also found to be evolutionally conserved. Serine 128, on the other hand, is not evolutionary conserved and the Fum1S128D phosphorylation mimic was able to aid DNA repair. Our molecular model is that the above modifications inhibit the enzymatic activity of cytosolic fumarase under conditions of no DNA damage induction and when there is less need for the enzyme. Upon genotoxic stress, some fumarase modifications are removed and some enzymes are degraded while unmodified proteins are synthesized. This report is the first to demonstrate how post-translational modifications influence the catalytic and DNA repair functions of fumarase in the cell.


Assuntos
Dano ao DNA/genética , Fumarato Hidratase/genética , Processamento de Proteína Pós-Traducional/genética , Respiração/genética , Citoplasma/enzimologia , Citoplasma/genética , Reparo do DNA/genética , Fumarato Hidratase/química , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Fosforilação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Ubiquitinação/genética
8.
Arch Virol ; 164(7): 1889-1895, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31087191

RESUMO

Singapore grouper iridovirus (SGIV) is a lethal grouper virus containing 162 predicted ORFs. Previous proteomic studies led to identification of 73 SGIV structural proteins. Here, SDS-assisted tube-gel digestion and DOC-assisted in-solution digestion coupled with LC-ESI-MS/MS were applied to further profile the SGIV structural proteome. We identified a total of 90 SGIV structural proteins including 24 newly reported proteins. Additionally, several PTMs were identified, including 26 N-terminal acetylated proteins, three phosphorylated proteins, and one myristoylated protein. Importantly, 47 of the proteins that were identified are predicted to contain conserved domains. Our work greatly expands the repertoire of the SGIV structural proteome and provides more insight into the biology of SGIV.


Assuntos
Bass/virologia , Doenças dos Peixes/virologia , Iridovirus/genética , Iridovirus/isolamento & purificação , Proteínas Estruturais Virais/genética , Animais , Perfilação da Expressão Gênica , Fases de Leitura Aberta/genética , Proteoma/genética , Proteômica , Espectrometria de Massas em Tandem
9.
J Cancer Res Ther ; 15(1): 96-103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880762

RESUMO

CONTEXT: Colorectal cancer (CRC) is one of the most common malignancies and one of the leading causes of cancer death worldwide. Establishing early detection methods or markers of CRC is central to improve the survival rate of CRC patients. Nowadays, new molecular tools have been developed to acquire further knowledge on tumor progression. AIMS: Comparative proteomics analysis of Vietnamese colorectal carcinoma in different stages was performed to gain an insight into the molecular events taking place in CRC and metastasis. SUBJECTS AND METHODS: In this study, the comparative protein expression analysis of ten paired CRC and its corresponding noncancerous tissue samples was performed using the combination of isobaric tags for relative and absolute quantitation labeling and mass spectrometry (MS). The data obtained were further analyzed with Ingenuity Pathways Analysis (IPA) system. RESULTS: Based on the MS/MS spectra analyzed by ProteinPilot software, 684 proteins were identified, out of which 215 were observed to be differentially expressed in at least 1 sample pair. Individual protein expression and variation have been identified for each patient. IPA system demonstrated cytoskeletal signaling as the top-ranked functional pathway network associated with the oncogenic function. CONCLUSIONS: Our study supplemented the understanding about proteome of Vietnamese CRC patients and identified statistically protein expression differences among samples assisting in finding effective biomarkers for CRC diagnostics.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais/patologia , Proteômica/métodos , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/análise , Proteômica/instrumentação , Software , Espectrometria de Massas em Tandem/métodos , Vietnã
10.
Small ; 14(23): e1800190, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29741810

RESUMO

The increasing number of nanoparticles (NPs) being used in various industries has led to growing concerns of potential hazards that NP exposure can incur on human health. However, its global effects on humans and the underlying mechanisms are not systemically studied. Human embryonic stem cells (hESCs), with the ability to differentiate to any cell types, provide a unique system to assess cellular, developmental, and functional toxicity in vitro within a single system highly relevant to human physiology. Here, the quantitative proteomics approach is adopted to evaluate the molecular consequences of titanium dioxide NPs (TiO2 NPs) exposure in hESCs. The study identifies ≈328 unique proteins significantly affected by TiO2 NPs exposure. Proteomics analysis highlights that TiO2 NPs can induce DNA damage, elevated oxidative stress, apoptotic responses, and cellular differentiation. Furthermore, in vivo analysis demonstrates remarkable reduction in the ability of hESCs in teratoma formation after TiO2 NPs exposure, suggesting impaired pluripotency. Subsequently, it is found that TiO2 NPs can disrupt hESC mesoderm differentiation into cardiomyocytes. The study unveils comprehensive changes in the molecular landscape of hESCs by TiO2 NPs and identifies the impact which TiO2 NPs can have on the pluripotency and differentiation properties of human stem cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Nanopartículas Metálicas/toxicidade , Proteômica , Titânio/toxicidade , Morte Celular/efeitos dos fármacos , Dano ao DNA , Ontologia Genética , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Mesoderma/citologia , Nanopartículas Metálicas/ultraestrutura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Sci Rep ; 8(1): 5903, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651044

RESUMO

Molecules of single proteins, echoforms, can be distributed between two (or more) subcellular locations, a phenomenon which we refer to as dual targeting or dual localization. The yeast aconitase gene ACO1 (778 amino acids), encodes a single translation product that is nonetheless dual localized to the cytosol and mitochondria by a reverse translocation mechanism. The solved crystal structure of aconitase isolated from porcine heart mitochondria shows that it has four domains. The first three tightly associated N-terminal domains are tethered to the larger C-terminal fourth domain (C-terminal amino acids 517-778). We have previously shown that the aconitase C terminal domain constitutes an independent dual targeting signal when fused to mitochondria-targeted passenger-proteins. We show that the aconitase N and C-terminal domains interact and that this interaction is important for efficient aconitase post translational import into mitochondria and for aconitase dual targeting (relative levels of aconitase echoforms). Our results suggest a "chaperone-like function" of the C terminal domain towards the N terminal domains which can be modulated by Ssa1/2 (cytosolic Hsp70).


Assuntos
Adenosina Trifosfatases/química , Citosol/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteína 1 Reguladora do Ferro/química , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Molecules ; 22(9)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28858244

RESUMO

Background: Andrographolide (ADR), the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA) of ADR's anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML) cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.


Assuntos
Antineoplásicos/farmacologia , Diterpenos/farmacologia , Ácidos Graxos/biossíntese , Ferro/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
ACS Cent Sci ; 3(7): 743-750, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28776016

RESUMO

The antimalarial artemisinin (ART) possesses anticancer activity, but its underlying mechanism remains largely unclear. Using a chemical proteomics approach with artemisinin-based activity probes, we identified over 300 specific ART targets. This reveals an anticancer mechanism whereby ART promiscuously targets multiple critical biological pathways and leads to cancer cell death. The specific cytotoxicity of ART against colorectal cancer (CRC) cells rather than normal colon epithelial cells is due to the elevated capacity of heme synthesis in the cancer cells. Guided by this mechanism, the specific cytotoxicity of ART toward CRC cells can be dramatically enhanced with the addition of aminolevulinic acid (ALA), a clinically used heme synthesis precursor, to increase heme levels. Importantly, this novel ART/ALA combination therapy proves to be more effective than an ART monotherapy in a mouse xenograft CRC model. Thus, ART can be repurposed and potentiated by exploitation of its mechanism of action and the metabolic features of the CRC cells.

14.
Molecules ; 22(8)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786914

RESUMO

The artemisinin compounds, which are well-known for their potent therapeutic antimalarial activity, possess in vivo and in vitro antitumor effects. Although the anticancer effect of artemisinin compounds has been extensively reported, the precise mechanisms underlying its cytotoxicity remain under intensive study. In the present study, a high-throughput quantitative proteomics approach was applied to identify differentially expressed proteins of HCT116 colorectal cancer cell line with artesunate (ART) treatment. Through Ingenuity Pathway Analysis, we discovered that the top-ranked ART-regulated biological pathways are abrogation of fatty acid biosynthetic pathway and mitochondrial dysfunction. Subsequent assays showed that ART inhibits HCT116 cell proliferation through suppressing the fatty acid biosynthetic pathway and activating the mitochondrial apoptosis pathway. In addition, ART also regulates several proteins that are involved in NF-κB pathway, and our subsequent assays showed that ART suppresses the NF-κB pathway. These proteomic findings will contribute to improving our understanding of the underlying molecular mechanisms of ART for its therapeutic cytotoxic effect towards cancer cells.


Assuntos
Artemisininas/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Ácidos Graxos/biossíntese , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Artesunato , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteômica/métodos , Espécies Reativas de Oxigênio
15.
Angew Chem Int Ed Engl ; 55(44): 13770-13774, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27709833

RESUMO

Understanding the mechanism of action (MOA) of bioactive natural products will guide endeavor to improve their cellular activities. Artemisinin and its derivatives inhibit cancer cell proliferation, yet with much lower efficiencies than their roles in killing malaria parasites. To improve their efficacies on cancer cells, we studied the MOA of artemisinin using chemical proteomics and found that free heme could directly activate artemisinin. We then designed and synthesized a derivative, ART-TPP, which is capable of targeting the drug to mitochondria where free heme is synthesized. Remarkably, ART-TPP exerted more potent inhibition than its parent compound to cancer cells. A clickable probe ART-TPP-Alk was also employed to confirm that the attachment of the TPP group could label more mitochondrial proteins than that for the ART derivative without TPP (AP1). This work shows the importance of MOA study, which enables us to optimize the design of natural drug analogues to improve their biological activities.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Desenho de Fármacos , Mitocôndrias/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Artemisininas/síntese química , Artemisininas/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
16.
Sci Rep ; 6: 22146, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26915414

RESUMO

To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQ(TM) quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway Analysis(TM) (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Curcumina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Humanos , Lisossomos/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
17.
Proteomics ; 15(22): 3905-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26359947

RESUMO

The high mortality rate in colorectal cancer is mostly ascribed to metastasis, but the only clinical biomarker available for disease monitoring and prognosis is the carcinoembryonic antigen (CEA). However, the prognostic utility of CEA remains controversial. In an effort to identify novel biomarkers that could be potentially translated for clinical use, we collected the secretomes from the colon adenocarcinoma cell line HCT-116 and its metastatic derivative, E1, using the hollow fiber culture system, and utilized the multilectin affinity chromatography approach to enrich for the secreted glycoproteins (glyco-secretome). The HCT-116 and E1 glyco-secretomes were compared using the label-free quantitative SWATH-MS technology, and a total of 149 glycoproteins were differentially secreted in E1 cells. Among these glycoproteins, laminin ß-1 (LAMB1), a glycoprotein not previously known to be secreted in colorectal cancer cells, was observed to be oversecreted in E1 cells. In addition, we showed that LAMB1 levels were significantly higher in colorectal cancer patient serum samples as compared to healthy controls when measured using ELISA. ROC analyses indicated that LAMB1 performed better than CEA at discriminating between colorectal cancer patients from controls. Moreover, the diagnostic performance was further improved when LAMB1 was used in combination with CEA.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Laminina/sangue , Proteoma/metabolismo , Biomarcadores Tumorais/metabolismo , Antígeno Carcinoembrionário/sangue , Estudos de Casos e Controles , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Humanos , Laminina/metabolismo , Metástase Neoplásica
18.
Int J Anal Chem ; 2015: 763969, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25873971

RESUMO

Majority of the proteomic studies on tissue samples involve the use of gel-based approach for profiling and digestion. The laborious gel-based approach is slowly being replaced by the advancing in-solution digestion approach. However, there are still several difficulties such as difficult-to-solubilize proteins, poor proteomic analysis in complex tissue samples, and the presence of sample impurities. Henceforth, there is a great demand to formulate a highly efficient protein extraction buffer with high protein extraction efficiency from tissue samples, high compatibility with in-solution digestion, reduced number of sample handling steps to reduce sample loss, low time consumption, low cost, and ease of usage. Here, we evaluated various existing protein extraction buffers with zebrafish liver tumor samples and found that sodium deoxycholate- (DOC-) based extraction buffer with heat denaturation was the most effective approach for highly efficient extraction of proteins from complex tissues such as the zebrafish liver tumor. A total of 4,790 proteins have been identified using shotgun proteomics approach with 2D LC, which to our knowledge is the most comprehensive study for zebrafish liver tumor proteome.

19.
Oncoscience ; 2(2): 111-124, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859554

RESUMO

Acute myeloid leukemia (AML) is a form of cancer that affects the hematopoietic precursor cells with lethal effects. We investigated the prospect of using genistein as an effective alternate therapy for AML. A two-cell line model, one possessing the FLT3 gene with the ITD mutation (MV4-11) and the other with the wildtype FLT3 gene (HL-60) has been employed. Our 8-plexed iTRAQ™-based quantitative proteomics analysis together with various functional studies demonstrated that genistein exerts anti-leukemic effects on both the AML cell lines. Genistein treatment on the AML cells showed that the drug arrested the mTOR pathway leading to down-regulation of protein synthesis. Additionally, genistein treatment is found to induce cell death via apoptosis. Contrasting regulatory effects of genistein on the cell cycle of the two cell lines were also identified, with the induction of G2/M phase arrest in HL-60 cells but not in MV4-11 cells. Hence, our study highlights the potent anti-leukemic effect of genistein on AML cells irrespective of their genetic status. This suggests the potential use of genistein as an effective general drug therapy for AML patients.

20.
Phytomedicine ; 22(1): 203-12, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25636890

RESUMO

Panduratin A (PA), a cyclohexanyl chalcone from Boesenbergia rotunda (L.) Mansf. was shown to possess anti-angiogenic effects in our previous study. In the present study, the molecular targets and anti-angiogenic mechanisms of PA on human umbilical vein endothelial cells (HUVECs) were identified using an iTRAQ-based quantitative proteomics approach. A total of 263 proteins were found to be differentially regulated in response to treatment with PA. Ingenuity Pathway Analysis revealed that cellular growth and proliferation, protein synthesis, RNA post-transcriptional modification, cellular assembly and organization and cell-to-cell signaling and interaction were the most significantly deregulated molecular and cellular functions in PA-treated HUVECs. PA inhibited the expressions of ARPC2 and CTNND1 that are associated with the formation of actin cytoskeleton, focal adhesion and cellular protrusions. In addition, PA down-regulated CD63, GRB-2, ICAM-2 and STAB-1 that are implicated in adhesion, migration and tube formation of endothelial cells. The differential expressions of three targets, namely, ARPC2, CDK4, and GRB-2 were validated by western blot analyses. Furthermore, PA inhibited G1-S progression, and resulted in G0/G1 arrest in HUVECs. The blockage in cell cycle progression was accompanied with the suppression of mTOR signaling. Treatment of HUVECs with PA resulted in decreased phosphorylation of ribosomal S6 and 4EBP1 proteins, the two downstream effectors of mTOR signaling. We further showed that PA is able to inhibit mTOR signaling induced by VEGF, a potent inducer of angiogenesis. Taken together, by integrating quantitative proteomic approach, we identified protein targets in which PA mediates its anti-angiogenic effects. The present study thus provides mechanistic evidence to the previously reported multifaceted anti-angiogenic effects of PA. Our study further identified mTOR signaling as an important target of PA, and therefore highlights the potential of PA for therapeutic intervention against angiogenesis-related pathogenesis, particularly, metastatic malignancy.


Assuntos
Inibidores da Angiogênese/farmacologia , Chalconas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteoma/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Proteína Adaptadora GRB2/metabolismo , Humanos , Proteômica , Rizoma/química , Zingiberaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA