Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658031

RESUMO

BACKGROUND: Tigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear. METHODS: A combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed. RESULTS: Here, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ER upregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade. CONCLUSIONS: These data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Morte Celular Imunogênica , Animais , Camundongos , Morte Celular Imunogênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia
2.
Neuro Oncol ; 25(2): 248-260, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35608632

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly lethal malignancy for which neoangiogenesis serves as a defining hallmark. The anti-VEGF antibody, bevacizumab, has been approved for the treatment of recurrent GBM, but resistance is universal. METHODS: We analyzed expression data of GBM patients treated with bevacizumab to discover potential resistance mechanisms. Patient-derived xenografts (PDXs) and cultures were interrogated for effects of phosphofructokinase-1, muscle isoform (PFKM) loss on tumor cell motility, migration, and invasion through genetic and pharmacologic targeting. RESULTS: We identified PFKM as a driver of bevacizumab resistance. PFKM functions dichotomize based on subcellular location: cytosolic PFKM interacted with KIF11, a tubular motor protein, to promote tumor invasion, whereas nuclear PFKM safeguarded genomic stability of tumor cells through interaction with NBS1. Leveraging differential transcriptional profiling, bupivacaine phenocopied genetic targeting of PFKM, and enhanced efficacy of bevacizumab in preclinical GBM models in vivo. CONCLUSION: PFKM drives novel molecular pathways in GBM, offering a translational path to a novel therapeutic paradigm.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfofrutoquinase-1 , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
4.
Biomedicines ; 10(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35203541

RESUMO

Adult diffuse glioma, particularly glioblastoma (GBM), is a devastating tumor of the central nervous system. The existential threat of this disease requires on-going treatment to counteract tumor progression. The present outcome is discouraging as most patients will succumb to this disease. The low cure rate is consistent with the failure of first-line therapy, radiation and temozolomide (TMZ). Even with their therapeutic mechanism of action to incur lethal DNA lesions, tumor growth remains undeterred. Delivering additional treatments only delays the inescapable development of therapeutic tolerance and disease recurrence. The urgency of establishing lifelong tumor control needs to be re-examined with a greater focus on eliminating resistance. Early genomic and transcriptome studies suggest each tumor subtype possesses a unique molecular network to safeguard genome integrity. Subsequent seminal work on post-therapy tumor progression sheds light on the involvement of DNA repair as the causative contributor for hypermutation and therapeutic failure. In this review, we will provide an overview of known molecular factors that influence the engagement of different DNA repair pathways, including targetable vulnerabilities, which can be exploited for clinical benefit with the use of specific inhibitors.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33737223

RESUMO

The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 µg/ml) than WE (EC50 = 52.8 ± 1.19 µg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 µg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 ß (pGSK3ß) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.


Assuntos
Antineoplásicos/farmacologia , Melanócitos/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Cogumelos Shiitake/química , Peixe-Zebra/embriologia , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanócitos/citologia , Melanoma/tratamento farmacológico
6.
Nat Commun ; 11(1): 4709, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948765

RESUMO

Glioblastoma cancer-stem like cells (GSCs) display marked resistance to ionizing radiation (IR), a standard of care for glioblastoma patients. Mechanisms underpinning radio-resistance of GSCs remain largely unknown. Chromatin state and the accessibility of DNA lesions to DNA repair machineries are crucial for the maintenance of genomic stability. Understanding the functional impact of chromatin remodeling on DNA repair in GSCs may lay the foundation for advancing the efficacy of radio-sensitizing therapies. Here, we present the results of a high-content siRNA microscopy screen, revealing the transcriptional elongation factor SPT6 to be critical for the genomic stability and self-renewal of GSCs. Mechanistically, SPT6 transcriptionally up-regulates BRCA1 and thereby drives an error-free DNA repair in GSCs. SPT6 loss impairs the self-renewal, genomic stability and tumor initiating capacity of GSCs. Collectively, our results provide mechanistic insights into how SPT6 regulates DNA repair and identify SPT6 as a putative therapeutic target in glioblastoma.


Assuntos
Reparo do DNA , Instabilidade Genômica , Glioblastoma/genética , Células-Tronco Neoplásicas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proteína BRCA1 , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/patologia , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , Tolerância a Radiação , Radiação Ionizante , Transcriptoma
8.
Front Chem ; 8: 601649, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520933

RESUMO

Malignant cancer is a devastating disease often associated with a poor clinical prognosis. For decades, modern drug discoveries have attempted to identify potential modulators that can impede tumor growth. Cancer stem cells however are more resistant to therapeutic intervention, which often leads to treatment failure and subsequent disease recurrence. Here in this study, we have developed a specific multi-target drug delivery nanoparticle system against breast cancer stem cells (BCSCs). Therapeutic agents curcumin and salinomycin have complementary functions of limiting therapeutic resistance and eliciting cellular death, respectively. By conjugation of CD44 cell-surface glycoprotein with poly(lactic-co-glycolic acid) (PLGA) nanoparticles that are loaded with curcumin and salinomycin, we investigated the cellular uptake of BCSCs, drug release, and therapeutic efficacy against BCSCs. We determined CD44-targeting co-delivery nanoparticles are highly efficacious against BCSCs by inducing G1 cell cycle arrest and limiting epithelial-mesenchymal transition. This curcumin and salinomycin co-delivery system can be an efficient treatment approach to target malignant cancer without the repercussion of disease recurrence.

9.
Neuro Oncol ; 22(2): 216-228, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31504812

RESUMO

BACKGROUND: Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair. METHODS: In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships. RESULTS: Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell-like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action. CONCLUSION: Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.


Assuntos
Neoplasias Encefálicas/patologia , Replicação do DNA/efeitos dos fármacos , Glioblastoma/patologia , Piranos/farmacologia , Reparo de DNA por Recombinação/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Descoberta de Drogas , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nano Lett ; 20(1): 478-495, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31789044

RESUMO

Microglia-mediated neuroinflammation is one of the most significant features in a variety of central nervous system (CNS) disorders such as traumatic brain injury, stroke, and many neurodegenerative diseases. Microglia become polarized upon stimulation. The two extremes of the polarization are the neuron-destructive proinflammatory M1-like and the neuron-regenerative M2-like phenotypes. Thus, manipulating microglial polarization toward the M2 phenotype is a promising therapeutic approach for CNS repair and regeneration. It has been reported that nanoparticles are potential tools for regulating microglial polarization. Gold nanoclusters (AuNCs) could penetrate the blood-brain barrier and have neuroprotective effects, suggesting the possibility of utilizing AuNCs to regulate microglial polarization and improve neuronal regeneration in CNS. In the current study, AuNCs functionalized with dihydrolipoic acid (DHLA-AuNCs), an antioxidant with demonstrated neuroprotective roles, were prepared, and their effects on polarization of a microglial cell line (BV2) were examined. DHLA-AuNCs effectively suppressed proinflammatory processes in BV2 cells by inducing polarization toward the M2-like phenotype. This was associated with a decrease in reactive oxygen species and reduced NF-kB signaling and an improvement in cell survival coupled with enhanced autophagy and inhibited apoptosis. Conditioned medium from DHLA-AuNC-treated BV2 cells was able to enhance neurogenesis in both the neuronal cell line N2a and in an ex vivo brain slice stroke model. The direct treatment of brain slices with DHLA-AuNCs also ameliorated stroke-related tissue injury and reduced astrocyte activation (astrogliosis). This study suggests that by regulating neuroinflammation to improve neuronal regeneration, DHLA-AuNCs could be a potential therapeutic agent in CNS disorders.


Assuntos
Polaridade Celular/efeitos dos fármacos , Ouro , Nanopartículas Metálicas/química , Microglia/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Ácido Tióctico/análogos & derivados , Animais , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Camundongos , Ácido Tióctico/química , Ácido Tióctico/farmacologia
11.
J Cell Mol Med ; 23(12): 8151-8160, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31565865

RESUMO

Suppressor of morphogenesis in genitalia 1 (SMG1) and ataxia telangiectasia mutated (ATM) are members of the PI3-kinase like-kinase (PIKK) family of proteins. ATM is a well-established tumour suppressor. Loss of one or both alleles of ATM results in an increased risk of cancer development, particularly haematopoietic cancer and breast cancer in both humans and mouse models. In mice, total loss of SMG1 is embryonic lethal and loss of a single allele results in an increased rate of cancer development, particularly haematopoietic cancers and lung cancer. In this study, we generated mice deficient in Atm and lacking one allele of Smg1, Atm-/- Smg1gt/+ mice. These mice developed cancers more rapidly than either of the parental genotypes, and all cancers were haematopoietic in origin. The combined loss of Smg1 and Atm resulted in a higher level of basal DNA damage and oxidative stress in tissues than loss of either gene alone. Furthermore, Atm-/- Smg1gt/+ mice displayed increased cytokine levels in haematopoietic tissues compared with wild-type animals indicating the development of low-level inflammation and a pro-tumour microenvironment. Overall, our data demonstrated that combined loss of Atm expression and decreased Smg1 expression increases haematopoietic cancer development.


Assuntos
Dano ao DNA , Neoplasias Hematológicas/genética , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Raios gama , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Heterozigoto , Estimativa de Kaplan-Meier , Longevidade/genética , Linfoma/genética , Linfoma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/deficiência
12.
Acta Neuropathol ; 138(6): 1033-1052, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31463571

RESUMO

Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.


Assuntos
Neoplasias Encefálicas/metabolismo , Distroglicanas/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral/fisiologia , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/cirurgia , Transformação Celular Neoplásica , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Glioma/irrigação sanguínea , Glioma/cirurgia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias
13.
Cells ; 8(9)2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466397

RESUMO

Diffuse gliomas are the most common primary malignant brain tumor. Although extracranial metastases are rarely observed, recent studies have shown the presence of circulating tumor cells (CTCs) in the blood of glioma patients, confirming that a subset of tumor cells are capable of entering the circulation. The isolation and characterization of CTCs could provide a non-invasive method for repeated analysis of the mutational and phenotypic state of the tumor during the course of disease. However, the efficient detection of glioma CTCs has proven to be challenging due to the lack of consistently expressed tumor markers and high inter- and intra-tumor heterogeneity. Thus, for this field to progress, an omnipresent but specific marker of glioma CTCs is required. In this article, we demonstrate how the recombinant malaria VAR2CSA protein (rVAR2) can be used for the capture and detection of glioma cell lines that are spiked into blood through binding to a cancer-specific oncofetal chondroitin sulfate (ofCS). When using rVAR2 pull-down from glioma cells, we identified a panel of proteoglycans, known to be essential for glioma progression. Finally, the clinical feasibility of this work is supported by the rVAR2-based isolation and detection of CTCs from glioma patient blood samples, which highlights ofCS as a potential clinical target for CTC isolation.


Assuntos
Antígenos de Protozoários/farmacologia , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/diagnóstico , Separação Celular/métodos , Glioma/diagnóstico , Células Neoplásicas Circulantes/metabolismo , Neoplasias Encefálicas/metabolismo , Contagem de Células/métodos , Linhagem Celular Tumoral , Proteoglicanas de Sulfatos de Condroitina/sangue , Glioma/metabolismo , Humanos , Estudo de Prova de Conceito , Proteínas Recombinantes/farmacologia
14.
Mol Pharm ; 16(6): 2532-2539, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31009228

RESUMO

Cancer stem cells (CSCs) are a subpopulation of tumor cells that exhibit self-renewal, differentiation, and tumorigenicity. CSCs are highly resistant to the conventional cancer treatment and have been associated with metastasis. Several studies have been shown that salinomycin (Sal) has the potential to target cancer stem cells evidenced by in vitro and in vivo tumor models. Here, salinomycin was conjugated with biocompatible gold nanoparticles (AuNPs) coated with poly(ethylene glycol) to improve its specificity in targeting breast cancer stem cells (BCSCs). BCSCs derived from CD24low/CD44high subpopulation showed high sensitivity to Sal-AuNP treatment. An in-depth analysis on the mechanism of action of Sal-AuNPs indicated ferroptosis, an iron-dependent cell death, was achieved as a result of iron accumulation and inhibition of antioxidant properties. This also led to the induction of oxidative stress, mitochondrial dysfunction, and lipid oxidation. Our findings suggest Sal-AuNP treatment is an efficient therapeutic avenue in eliminating cancer stem cells.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Piranos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Fluoresceínas/metabolismo , Glutationa/metabolismo , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
Sci Rep ; 9(1): 4902, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894629

RESUMO

Low-passage, serum-free cell lines cultured from patient tumour tissue are the gold-standard for preclinical studies and cellular investigations of glioblastoma (GBM) biology, yet entrenched, poorly-representative cell line models are still widely used, compromising the significance of much GBM research. We submit that greater adoption of these critical resources will be promoted by the provision of a suitably-sized, meaningfully-described reference collection along with appropriate tools for working with them. Consequently, we present a curated panel of 12 readily-usable, genetically-diverse, tumourigenic, patient-derived, low-passage, serum-free cell lines representing the spectrum of molecular subtypes of IDH-wildtype GBM along with their detailed phenotypic characterisation plus a bespoke set of lentiviral plasmids for bioluminescent/fluorescent labelling, gene expression and CRISPR/Cas9-mediated gene inactivation. The cell lines and all accompanying data are readily-accessible via a single website, Q-Cell (qimrberghofer.edu.au/q-cell/) and all plasmids are available from Addgene. These resources should prove valuable to investigators seeking readily-usable, well-characterised, clinically-relevant, gold-standard models of GBM.


Assuntos
Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Transplante de Neoplasias , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade
16.
Toxics ; 6(4)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304811

RESUMO

Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 µg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 µg/mL) and three times less sensitive when treated with >500 µg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 µg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 µg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.

17.
J Neurooncol ; 138(3): 509-518, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29564746

RESUMO

Glioblastoma (GBM) is a highly fatal disease with a 5 year survival rate of less than 22%. One of the most effective treatment regimens to date is the use of radiotherapy which induces lethal DNA double-strand breaks to prevent tumour growth. However, recurrence occurs in the majority of patients and is in-part a result of robust radioresistance mechanisms. In this study, we demonstrate that the multifunctional cytokine, interleukin-6 (IL-6), confers a growth advantage in GBM cells but does not have the same effect on normal neural progenitor cells. Further analysis showed IL-6 can promote radioresistance in GBM cells when exposed to ionising radiation. Ablation of the Ataxia-telangiectasia mutated serine/threonine kinase that is recruited and activated by DNA double-strand breaks reverses the effect of radioresistance and re-sensitised GBM to DNA damage thus leading to increase cell death. Our finding suggests targeting the signaling cascade of DNA damage response is a potential therapeutic approach to circumvent IL-6 from promoting radioresistance in GBM.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proliferação de Células/efeitos da radiação , Neoplasias do Sistema Nervoso Central/radioterapia , Glioblastoma/radioterapia , Interleucina-6/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Morte Celular/fisiologia , Morte Celular/efeitos da radiação , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Neoplasias do Sistema Nervoso Central/metabolismo , Dano ao DNA/efeitos da radiação , Glioblastoma/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos da radiação , RNA Mensageiro/metabolismo , Tolerância a Radiação/fisiologia , Radiação Ionizante , Receptores de Interleucina-6/metabolismo
18.
Am J Hum Genet ; 101(2): 255-266, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28777932

RESUMO

Breast cancer risk is strongly associated with an intergenic region on 11q13. We have previously shown that the strongest risk-associated SNPs fall within a distal enhancer that regulates CCND1. Here, we report that, in addition to regulating CCND1, this enhancer regulates two estrogen-regulated long noncoding RNAs, CUPID1 and CUPID2. We provide evidence that the risk-associated SNPs are associated with reduced chromatin looping between the enhancer and the CUPID1 and CUPID2 bidirectional promoter. We further show that CUPID1 and CUPID2 are predominantly expressed in hormone-receptor-positive breast tumors and play a role in modulating pathway choice for the repair of double-strand breaks. These data reveal a mechanism for the involvement of this region in breast cancer.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 11/genética , Ciclina D1/genética , Reparo do DNA/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Elementos Facilitadores Genéticos/genética , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Células MCF-7 , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/genética
19.
Mol Cancer Res ; 15(9): 1184-1196, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28607006

RESUMO

Exposure of melanocytes to ultraviolet radiation (UVR) induces the formation of UV lesions that can produce deleterious effects in genomic DNA. Encounters of replication forks with unrepaired UV lesions can lead to several complex phenomena, such as the formation of DNA double-strand breaks (DSBs). The NR4A family of nuclear receptors are transcription factors that have been associated with mediating DNA repair functions downstream of the MC1R signaling pathway in melanocytes. In particular, emerging evidence shows that upon DNA damage, the NR4A2 receptor can translocate to sites of UV lesion by mechanisms requiring post-translational modifications within the N-terminal domain and at a serine residue in the DNA-binding domain at position 337. Following this, NR4A2 aids in DNA repair by facilitating chromatin relaxation, allowing accessibility for DNA repair machinery. Using A2058 and HT144 melanoma cells engineered to stably express wild-type or mutant forms of the NR4A2 proteins, we reveal that the expression of functional NR4A2 is associated with elevated cytoprotection against UVR. Conversely, knockdown of NR4A2 expression by siRNA results in a significant loss of cell viability after UV insult. By analyzing the kinetics of the ensuing 53BP1 and RAD51 foci following UV irradiation, we also reveal that the expression of mutant NR4A2 isoforms, lacking the ability to translocate, transactivate, or undergo phosphorylation, display compromised repair capacity.Implications: These data expand the understanding of the mechanism by which the NR4A2 nuclear receptor can facilitate DNA DSB repair. Mol Cancer Res; 15(9); 1184-96. ©2017 AACR.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Neoplasias/efeitos da radiação , Melanoma/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Humanos , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanoma/metabolismo , Melanoma/patologia , Melanoma/radioterapia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transfecção , Raios Ultravioleta
20.
Methods Mol Biol ; 1599: 71-84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28477112

RESUMO

Visual inspection of cellular activities based on conventional fluorescence microscope is a fundamental tool to study the role of DNA damage response (DDR). In the context of drug discovery where the capture of thousands of images is required across parallel experiments, this presents a challenge to data collection and analysis. Manual scoring is laborious and often reliant on trained personnel to intuit biological meaning through visual reasoning. On the other hand, high content screening combines the automation of microscopy image acquisition and analysis in a single platform to quantify cellular events of interests. The data generated is rapid and accurate, lessening the bias of human interpretation. Herein, this chapter will describe an image-based high content screen approach and the data analysis of Ataxia-Telangiectasia Mutated (ATM) DNA damage-induced foci.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Humanos , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA