Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 277: 104853, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804625

RESUMO

MOTIVATION: There are several well-established paradigms for identifying and pinpointing discriminative peptides/proteins using shotgun proteomic data; examples are peptide-spectrum matching, de novo sequencing, open searches, and even hybrid approaches. Such an arsenal of complementary paradigms can provide deep data coverage, albeit some unidentified discriminative peptides remain. RESULTS: We present DiagnoMass, software tool that groups similar spectra into spectral clusters and then shortlists those clusters that are discriminative for biological conditions. DiagnoMass then communicates with proteomic tools to attempt the identification of such clusters. We demonstrate the effectiveness of DiagnoMass by analyzing proteomic data from Escherichia coli, Salmonella, and Shigella, listing many high-quality discriminative spectral clusters that had thus far remained unidentified by widely adopted proteomic tools. DiagnoMass can also classify proteomic profiles. We anticipate the use of DiagnoMass as a vital tool for pinpointing biomarkers. AVAILABILITY: DiagnoMass and related documentation, including a usage protocol, are available at http://www.diagnomass.com.


Assuntos
Proteômica , Software , Proteômica/métodos , Proteínas/química , Peptídeos/química , Escherichia coli , Algoritmos , Bases de Dados de Proteínas
2.
Bioinformatics ; 38(22): 5119-5120, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36130273

RESUMO

MOTIVATION: Confident deconvolution of proteomic spectra is critical for several applications such as de novo sequencing, cross-linking mass spectrometry and handling chimeric mass spectra. RESULTS: In general, all deconvolution algorithms may eventually report mass peaks that are not compatible with the chemical formula of any peptide. We show how to remove these artifacts by considering their mass defects. We introduce Y.A.D.A. 3.0, a fast deconvolution algorithm that can remove peaks with unacceptable mass defects. Our approach is effective for polypeptides with less than 10 kDa, and its essence can be easily incorporated into any deconvolution algorithm. AVAILABILITY AND IMPLEMENTATION: Y.A.D.A. 3.0 is freely available for academic use at http://patternlabforproteomics.org/yada3. SUPPLEMENTARY INFORMATION: Supplementary information is available at Bioinformatics online.


Assuntos
Algoritmos , Proteômica , Peptídeos , Espectrometria de Massas/métodos , Software
3.
J Proteomics ; 225: 103864, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526479

RESUMO

We present RawVegetable, a software for mass spectrometry data assessment and quality control tailored toward shotgun proteomics and cross-linking experiments. RawVegetable provides four main modules with distinct features: (A) The charge state chromatogram that independently displays the ion current for each charge state; useful for optimizing the chromatography for highly charged ions and with lower XIC values such as those typically found in cross-linking experiments. (B) The XL-Artefact determination, which flags possible noncovalently associated peptides. (C) The TopN density estimation, for detecting retention time intervals of under or over-sampling, and (D) The chromatography reproducibility module, which provides pairwise comparisons between multiple experiments. RawVegetable, a tutorial, and the example data are freely available for academic use at: http://patternlabforproteomics.org/rawvegetable. SIGNIFICANCE: Chromatography optimization is a critical step for any shotgun proteomic or cross-linking mass spectrometry experiment. Here, we present a nifty solution with several key features, such as displaying individual charge state chromatograms, highlighting chromatographic regions of under- or over-sampling and checking for reproducibility.


Assuntos
Proteômica , Software , Espectrometria de Massas , Peptídeos , Reprodutibilidade dos Testes
4.
J Proteomics ; 202: 103371, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31034900

RESUMO

We present a new module integrated into the widely adopted PatternLab for proteomics to enable analysis of isotope-labeled peptides produced using dimethyl or SILAC. The accurate quantitation of proteins lies within the heart of proteomics; dimethylation has shown to be reliable, inexpensive, and applicable to any sample type. We validate our algorithm using an M. tuberculosis dataset obtained from two biological conditions; we used three dimethyl labels, one serving as an internal control for labeling a mixture of samples from both biological conditions. This internal control certified the proper functioning of our software. Availability: http://patternlabforproteomics.org, freely available for academic use.


Assuntos
Algoritmos , Proteínas de Bactérias/metabolismo , Bases de Dados de Proteínas , Marcação por Isótopo , Mycobacterium tuberculosis/metabolismo , Peptídeos/química , Proteômica/normas , Proteínas de Bactérias/química , Peptídeos/metabolismo
5.
J Proteomics ; 194: 179-190, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503829

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, affects millions of people worldwide, especially in Latin America. Approximately 30% of the cases evolve to the chronic symptomatic stage due to cardiac and/or digestive damage, generally accompanied by nervous system impairment. Given the higher frequency and severity of clinical manifestations related to cardiac tissue lesion, the goal of this study was the identification of proteins associated with the disease progression towards its cardiac form. Thus, T. cruzi bloodstream trypomastigotes proteins were submitted to immunoprecipitation using antibodies from patients with the asymptomatic or cardiac (stages B1 and C) forms of the disease and from healthy donors as control. Immunoreactive proteins were identified and quantified based on mass spectrometry analysis and shifts in the recognition profile were further evaluated. Compared to asymptomatic samples, IgG from stage C patients predominantly detected the I/6 autoantigen, whereas IgG from B1 patients resulted in higher yield of dihydrolipoamide acetyltransferase precursor, calpain cysteine peptidase, and two variants of CAP5.5. In this work, CAP5.5 recognition by serum immunoglobulin from patients with early cardiomyopathy generated a 23-fold abundance variation when compared to samples from asymptomatic patients, highlighting the participation of this protein in cardiac form progression of the disease. SIGNIFICANCE: While T. cruzi has become the major cause of infectious cardiomyopathy in Latin America, research groups have been struggling to find alternative treatment, vaccine candidates, and improved diagnostic tests. In addition, the absence of adequate biomarkers to assess cure and progression of disease is a major setback for clinical trials and patients monitoring. Therefore, our findings may contribute to a better understanding of T. cruzi pathogenesis and evaluation of suitable candidates for vaccine and diagnostic tests, besides the clinical applicability of the potential biomarkers for patient follow-up and prognosis. Finally, the identification of T. cruzi proteins recognized by IgG from healthy donors may contribute for the understanding and discovery of epitope conservation among a broad range of pathogens.


Assuntos
Calpaína , Cardiomiopatia Chagásica , Proteínas de Protozoários , Trypanosoma cruzi , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Calpaína/sangue , Calpaína/imunologia , Cardiomiopatia Chagásica/sangue , Cardiomiopatia Chagásica/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Proteínas de Protozoários/sangue , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/imunologia
6.
Nat Protoc ; 13(3): 431-458, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29388937

RESUMO

Cross-linking coupled with mass spectrometry (XL-MS) has emerged as a powerful strategy for the identification of protein-protein interactions, characterization of interaction regions, and obtainment of structural information on proteins and protein complexes. In XL-MS, proteins or complexes are covalently stabilized with cross-linkers and digested, followed by identification of the cross-linked peptides by tandem mass spectrometry (MS/MS). This provides spatial constraints that enable modeling of protein (complex) structures and regions of interaction. However, most XL-MS approaches are not capable of differentiating intramolecular from intermolecular links in multimeric complexes, and therefore they cannot be used to study homodimer interfaces. We have recently developed an approach that overcomes this limitation by stable isotope-labeling of one of the two monomers, thereby creating a homodimer with one 'light' and one 'heavy' monomer. Here, we describe a step-by-step protocol for stable isotope-labeling, followed by controlled denaturation and refolding in the presence of the wild-type protein. The resulting light-heavy dimers are cross-linked, digested, and analyzed by mass spectrometry. We show how to quantitatively analyze the corresponding data with SIM-XL, an XL-MS software with a module tailored toward the MS/MS data from homodimers. In addition, we provide a video tutorial of the data analysis with this protocol. This protocol can be performed in ∼14 d, and requires basic biochemical and mass spectrometry skills.


Assuntos
Marcação por Isótopo/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas , Peptídeos , Conformação Proteica , Proteínas , Software
7.
Nat Protoc ; 11(1): 102-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26658470

RESUMO

PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained modules allow for formatting of sequence databases, peptide spectrum matching, statistical filtering and data organization, extracting quantitative information from label-free and chemically labeled data, and analyzing statistics for differential proteomics. PatternLab also has modules to perform similarity-driven studies with de novo sequencing data, to evaluate time-course experiments and to highlight the biological significance of data with regard to the Gene Ontology database. The PatternLab for proteomics 4.0 package brings together all of these modules in a self-contained software environment, which allows for complete proteomic data analysis and the display of results in a variety of graphical formats. All updates to PatternLab, including new features, have been previously tested on millions of mass spectra. PatternLab is easy to install, and it is freely available from http://patternlabforproteomics.org.


Assuntos
Proteômica/métodos , Software , Integração de Sistemas , Bases de Dados de Proteínas , Humanos , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Fatores de Tempo
8.
J Proteomics ; 129: 51-55, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25638023

RESUMO

Chemical cross-linking has emerged as a powerful approach for the structural characterization of proteins and protein complexes. However, the correct identification of covalently linked (cross-linked or XL) peptides analyzed by tandem mass spectrometry is still an open challenge. Here we present SIM-XL, a software tool that can analyze data generated through commonly used cross-linkers (e.g., BS3/DSS). Our software introduces a new paradigm for search-space reduction, which ultimately accounts for its increase in speed and sensitivity. Moreover, our search engine is the first to capitalize on reporter ions for selecting tandem mass spectra derived from cross-linked peptides. It also makes available a 2D interaction map and a spectrum-annotation tool unmatched by any of its kind. We show SIM-XL to be more sensitive and faster than a competing tool when analyzing a data set obtained from the human HSP90. The software is freely available for academic use at http://patternlabforproteomics.org/sim-xl. A video demonstrating the tool is available at http://patternlabforproteomics.org/sim-xl/video. SIM-XL is the first tool to support XL data in the mzIdentML format; all data are thus available from the ProteomeXchange consortium (identifier PXD001677). This article is part of a Special Issue entitled: Computational Proteomics.


Assuntos
Algoritmos , Reagentes de Ligações Cruzadas/química , Peptídeos/química , Mapeamento de Interação de Proteínas/métodos , Análise de Sequência de Proteína/métodos , Software , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Reconhecimento Automatizado de Padrão/métodos , Ligação Proteica , Espectrometria de Massas em Tandem/métodos , Interface Usuário-Computador
9.
BMC Microbiol ; 14: 267, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25361869

RESUMO

BACKGROUND: Chromobacterium violaceum is a bacterium commonly found in tropical and subtropical regions and is associated with important pharmacological and industrial attributes such as producing substances with therapeutic properties and synthesizing biodegradable polymers. Its genome was sequenced, however, approximately 40% of its genes still remain with unknown functions. Although C. violaceum is known by its versatile capacity of living in a wide range of environments, little is known on how it achieves such success. Here, we investigated the proteomic profile of C. violaceum cultivated in the absence and presence of high iron concentration, describing some proteins of unknown function that might play an important role in iron homeostasis, amongst others. RESULTS: Briefly, C. violaceum was cultivated in the absence and in the presence of 9 mM of iron during four hours. Total proteins were identified by LC-MS and through the PatternLab pipeline. Our proteomic analysis indicates major changes in the energetic metabolism, and alterations in the synthesis of key transport and stress proteins. In addition, it may suggest the presence of a yet unidentified operon that could be related to oxidative stress, together with a set of other proteins with unknown function. The protein-protein interaction network also pinpointed the importance of energetic metabolism proteins to the acclimatation of C. violaceum in high concentration of iron. CONCLUSIONS: This is the first proteomic analysis of the opportunistic pathogen C. violaceum in the presence of high iron concentration. Our data allowed us to identify a yet undescribed operon that might have a role in oxidative stress defense. Our work provides new data that will contribute to understand how this bacterium achieve its capacity of surviving in harsh conditions as well as to open a way to explore the yet little availed biotechnological characteristics of this bacterium with the further exploring of the proteins of unknown function that we showed to be up-regulated in high iron concentration.


Assuntos
Proteínas de Bactérias/análise , Chromobacterium/química , Chromobacterium/efeitos dos fármacos , Ferro/metabolismo , Proteoma/análise , Cromatografia Líquida , Chromobacterium/crescimento & desenvolvimento , Chromobacterium/metabolismo , Meios de Cultura/química , Humanos , Espectrometria de Massas , Óperon , Proteômica
10.
J Proteome Res ; 12(10): 4532-46, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24001182

RESUMO

Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero ß-globin, and prolargin.


Assuntos
Envelhecimento/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Animais , Transporte Biológico , Creatina Quinase/metabolismo , Metabolismo Energético , Masculino , Peso Molecular , Músculo Esquelético/fisiologia , Tamanho do Órgão , Estresse Oxidativo , Proteólise , Proteômica , Piruvato Quinase/metabolismo , Ratos , Ratos Wistar , Coloração e Rotulagem , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA